Reflection Line in 3 minutes

Yamauchi Hitoshi Nichiyou kenkyuu aikouka 2009-05-07 Berlin, Germany

Reflection Line

- Lines observed on a surface from tube lights
- Car designers employed to see the surface quality
- Parallel fluorescent tubes are placed above the car model

Reflection Line in Berlin Hauptbahnhof

See the frames as light lines

Reflection Line in Berlin Hauptbahnhof

- See the frames as light lines
- See the reflection line in the train windows

Reflection Line in Berlin Hauptbahnhof

- See the frames as light lines
- See the reflection line in the train windows

Reflection line and mesh quality

- Eurographics cource note Figure 6.3
 - Geometric Modeling Based on Polygonal Meshes
- Reflection line shows the C^{{k-1}} property

Figure 6.3: Reflection lines on C^0 , C^1 and C^2 surfaces. One clearly sees that the differentiability of the reflection lines is one order lower, i.e., C^{-1} , C^0 and C^1 respectively.

Tips

- Someone (K.P.) said reflection line shows 3rd order quality of the surface. Why 3rd order?
 - Tangent is the first derivative, then normal is also.
 - Curvature is differential of curvature, means 2nd order
 - If you see C^2 with reflection line, it is derivative of the curvature 3rd order!

References

- Geometric Modeling based on Polygonal Meshes
 - Mario Botsch, Mark Pauly, Leif Kobbelt, Pierre Alliez, Bruno Levy, Stephan Bischo, Christian Roeossl, EG2008 Tutorial, 2008
- High-quality Display of Subdivision Surfaces on GPU(Computer Graphics) [in Japanese]
 - Takashi Kanai, Yusuke Yasui, IPSJ 47(2), pp.647-655,
 2006