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Why parallelogram area is
|x1 y2 – x2 y1| ?

● My question:

(x1 y2)

The area of parallelogram:

Why is this? is my question.
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Back to basics:
the area of rectangle and triangle

● Area of rectangle

    = base * height

● Area of triangle

    = ½ base * height

height base

height base



  

Shear doesn't change the area

h

● Shearing rectangle/triangle: no area change
● Because the base and height don't change

          Area of rectangle = b * h

          Area of triangle = ½ b * h

b b b
b b

b



  

Shear doesn't change the area

● Another explanation:
● Cut the blue triangle and paste to the left
● The same area of b * h

b

h

Cut the blue 
triangle

Paste to the 
left



  

Shear and Gaussian elimination

● Relationship between linear algebra
● Gaussian elimination is shearing.

● row2 → row2 – row1 * x2/x1
● (The last '→' is because y1 is 0 in this particular 

case, usually y2 also changes)

(x1,y1)

(x2,y2)

(x1,y1)

(0,y2)



  

Shear and Gaussian elimination

● Relationship between linear algebra
● Gaussian elimination is shearing.

● Gaussian elimination doesn't change the area
● area == determinant

● Determinant doesn't change!
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Parallelogram area

● Let's start with this 
figure

(x1, y1)
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Parallelogram area

● Cut the parallelogram in 
three parts



  

Parallelogram area

● More cut
● Think these two 

triangles
● Their area are the same

● ½ base * height are the 
same



  

Parallelogram area

● Blue and red triangles 
have the same area
● ½ base * height 

base

height



  

Parallelogram area

● These are the same 
area

=

=



  

Parallelogram area

● In the same way, these 
are the same area

=

=



  

Parallelogram area

● All together



  

Parallelogram area

● All together
● This is the parallelogram 

area



  

Parallelogram area

● Breakdown the area

= + +



  

Parallelogram area

● Breakdown the area

= + +

= –



  

Parallelogram area

● Put the coordinates

= + +

= –

|x1 y2 – x2 y1|=

(x1, y2)

(x2, y1)

x1 * y2 x2 * y1



  

Why these two parallelogram has 
the same area (1)?

● These parallelograms have the same area
● But hard to see from the picture...
● [1] Gilbert Strang, Introduction to linear algebra, 

4th ed. Chapter 5.3, Question 19 

(2,1)

(2,3)

(2,2)

(1,3)
(4,4)

(3,5)



  

Why these two parallelogram has 
the same area (1)?

● The line equation tells us y=0 points are 
the same

(2,1)

(2,3)
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(1,3)

(4,4)
(3,5)



  

Why these two parallelogram has 
the same area (1)?

● The line equation tells us y=0 points are 
the same

y = 0



  

Why these two parallelogram has 
the same area (1)?

● Now we shear the parallelogram
● Note: parallelogram area doesn't change if the 

shear follows the parallel line



  

Why these two parallelogram has 
the same area (1)?

● Now we shear the parallelogram
● Note: parallelogram area doesn't change if the 

shear follows the parallel line



  

Why these two parallelogram has 
the same area (1)?

● Base and height are the same

● The same area!

base base
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Why these two parallelogram has 
the same area (2)?

● Of course you can compute the determinant.
● Area = 4

(2,1)

(2,3)
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Why these two parallelogram has 
the same area (2)?

● Of course you can compute the determinant.
● Area = 4
● The same area! But this might not be so intuitive.

(2,2)
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(3,5)



  

Elimination and shear again 
The third explanation

● Elimination doesn't change the determinant (= 
area)

(2,1)

(2,3) row2 = row2 -row1



  

Elimination and shear again
The third explanation

● Elimination doesn't change the determinant (= 
area)

● Shear the parallelogram

row2 = row2 -row1

(0,-2)

(2,1)

(2,3)



  

Elimination and shear again
The third explanation

● This is the new parallelogram
● See how the matrix tells the parallelogram

(2,3)

(0,-2)



  

Elimination and shear again
The third explanation

● Now the area is 4

(2,3)

base = 2

height = 2

(0,-2)



  

Elimination and shear again
The third explanation

● Do the same … elimination

(2,2)

(1,3)
row2 =

     row2 - 2 * row1



  

Elimination and shear again
The third explanation

● Do the same … elimination

row2 =

     row2 - 2 * row1

(0,-4)

(1,3)

(2,2)



  

Elimination and shear  again
The third explanation

● Here is the new matrix

(0,-4)

(1,3)



  

Elimination and shear again
The third explanation

● The area is 4

(0,-4)

(1,3)

base = 4

height = 1



  

Determinant's linearity

● The determinant is a linear function of each row 
separately (e.g., [1] p.246, property 3) 
● Multiply row1 by any number t

– determinant is t times larger = area is t times larger

(a,b)

(c,d)

(ta,tb)

(c,d)



  

Determinant's linearity

● The determinant is a linear function of each row 
separately (e.g., [1] p.246, property 5) 
● We saw a shear is elimination

– l times row 1 from row 2 … no change the area/det

Vector (-a,-b)

(c,d)

(a,b)

(c,d)

(c–la,d-lb)

(a,b)

Vector (-la,-lb)



  

Determinant's linearity

● The determinant is a linear function of each row 
separately (e.g., [1] p.246, property 5) 
● We saw a shear is elimination

– l times row 1 from row 2 … no change the area/det

Vector (-a,-b)

(c,d)

(a,b)

(c,d)

(c–la,d-lb)

(a,b)

Vector (-la,-lb)



  

Conclusion: area of parallelogram

● |x1 y2 – x2 y1|
● = determinant
● Parallelogram doesn't 

change the area when 
shear

● It's same to the elimination
● Determinant doesn't 

change when elimination is 
performed (= sheared)

x1

y1

y2
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(x2 y2)
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And more...
● There are many related 

topics
● Cross product … k-forms
● Jacobian
● Stokes' theorem
● First fundamental form
● … 

● All related with 
parallelogram/parallelopipex1

y1

y2

x2

(x2 y2)

(x1 y1)
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