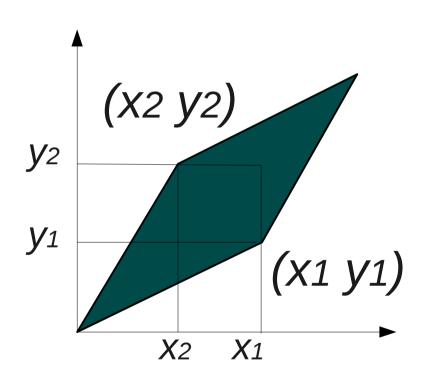
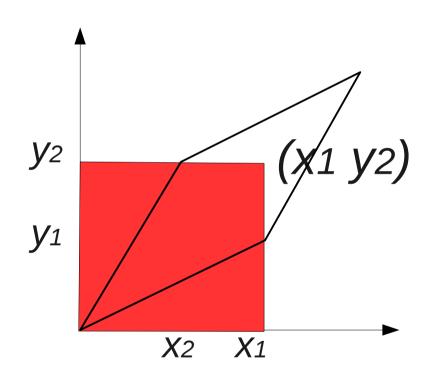
Why parallelogram area is |x1 y2 - x2 y1| ? (and it's 2x2 matrix determinant.) 2011-07-10 Yamauchi, Hitoshi Sunday Researcher

• My question: The area of parallelogram:



$$\left| \det \left(\begin{array}{cc} x_1 & y_1 \\ x_2 & y_2 \end{array} \right) \right| = |x_1 y_2 - x_2 y_1|$$

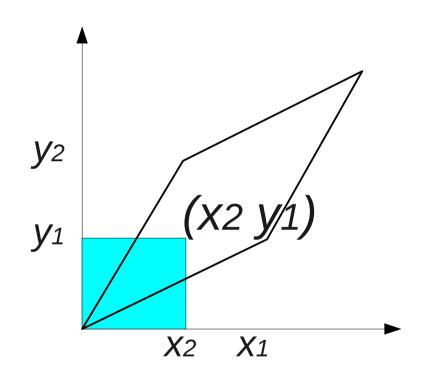
• My question: The area of parallelogram:



$$\det \left(\begin{array}{cc} x_1 & y_1 \\ x_2 & y_2 \end{array} \right) \bigg| = \left| x_1 y_2 - x_2 y_1 \right|$$

This is a rectangle area = base * height

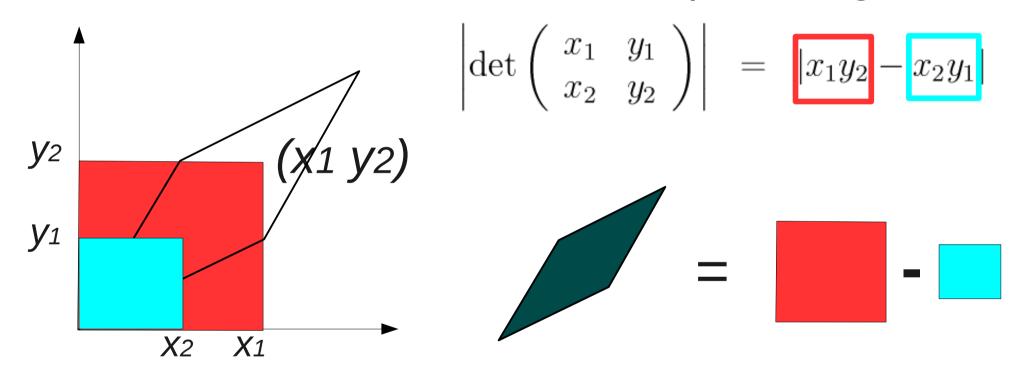
• My question: The area of parallelogram:



$$\left| \det \left(\begin{array}{cc} x_1 & y_1 \\ x_2 & y_2 \end{array} \right) \right| = \left| x_1 y_2 - x_2 y_1 \right|$$

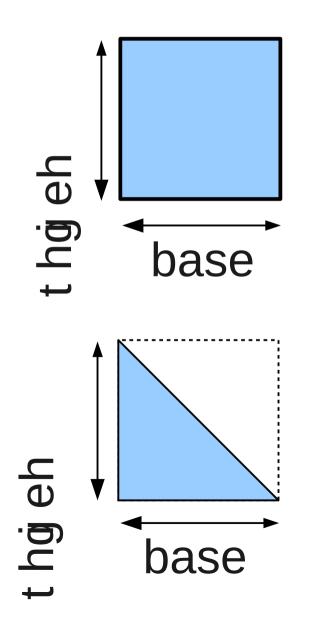
This is a rectangle area = base * height

• My question: The area of parallelogram:



Why is this? is my question.

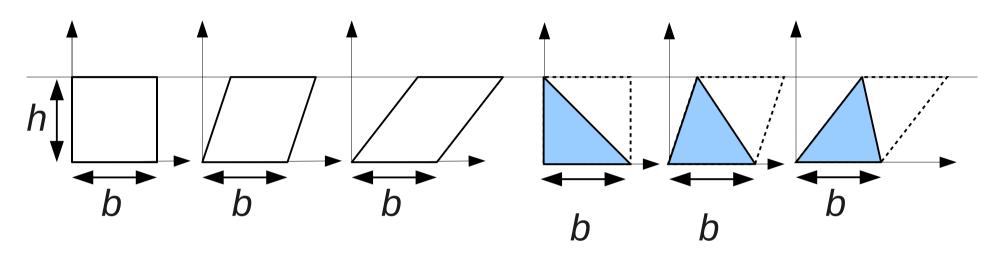
Back to basics: the area of rectangle and triangle



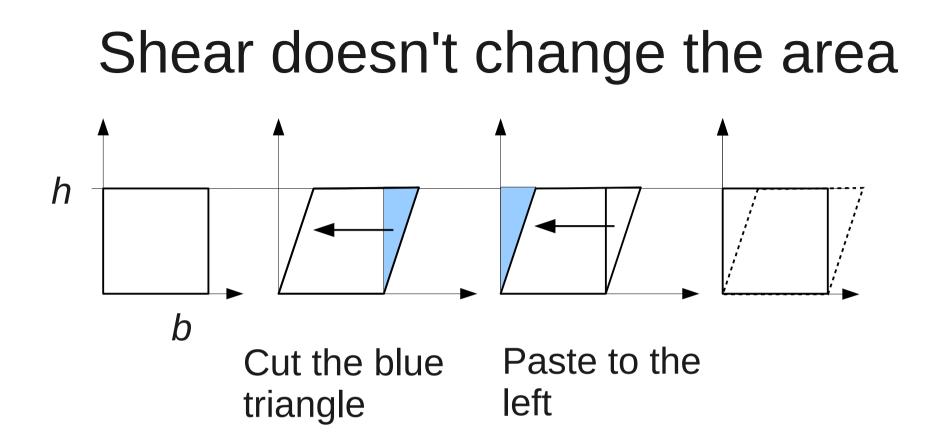
- Area of rectangle
 - = base * height

- Area of triangle
 - $= \frac{1}{2}$ base * height

Shear doesn't change the area



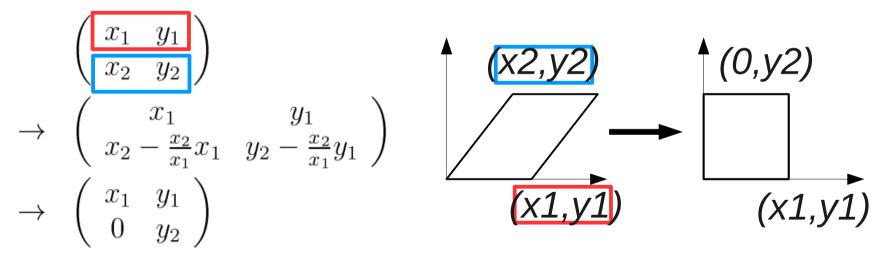
- Shearing rectangle/triangle: no area change
- Because the base and height don't change Area of rectangle = b * h Area of triangle = ½ b * h



- Another explanation:
 - Cut the blue triangle and paste to the left
 - The same area of b * h

Shear and Gaussian elimination

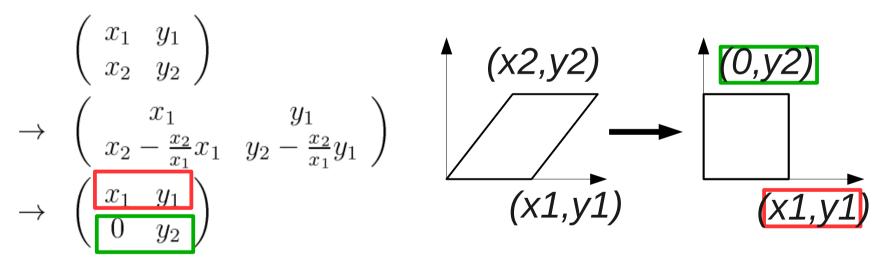
- Relationship between linear algebra
 - Gaussian elimination is shearing.



- row2 \rightarrow row2 row1 * x2/x1
- (The last ' $_{\rightarrow}$ ' is because y1 is 0 in this particular case, usually y2 also changes)

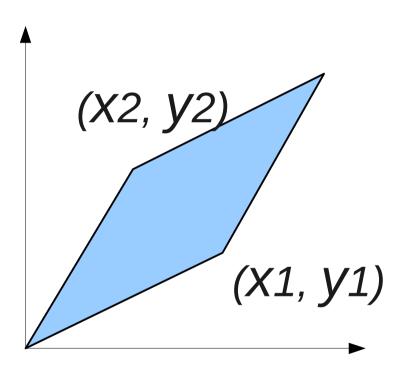
Shear and Gaussian elimination

- Relationship between linear algebra
 - Gaussian elimination is shearing.

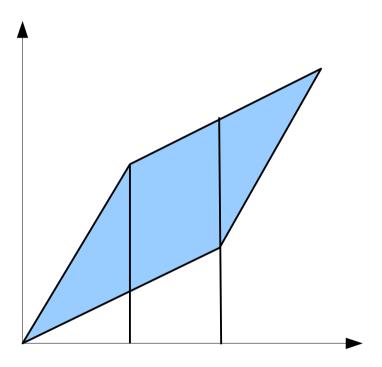


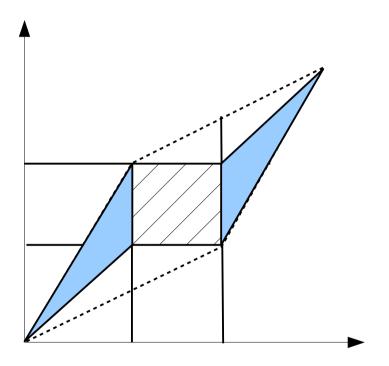
- Gaussian elimination doesn't change the area
 - area == determinant
- Determinant doesn't change!

• Let's start with this figure

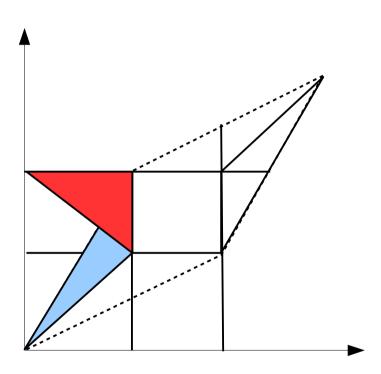


• Cut the parallelogram in three parts

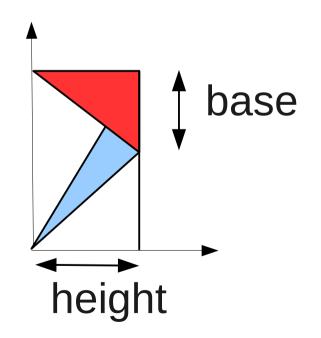




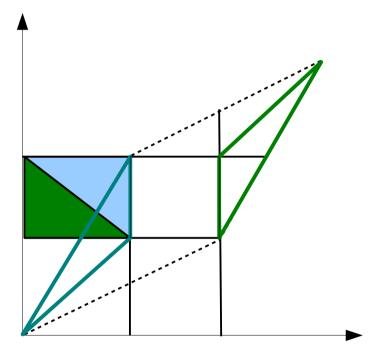
- More cut
- Think these two triangles
- Their area are the same
 - ¹/₂ base * height are the same

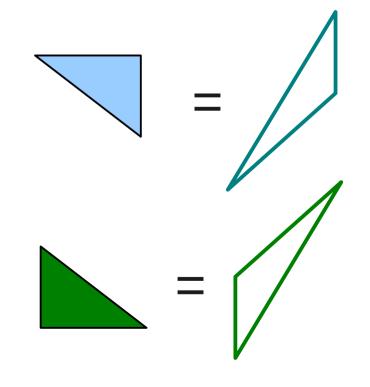


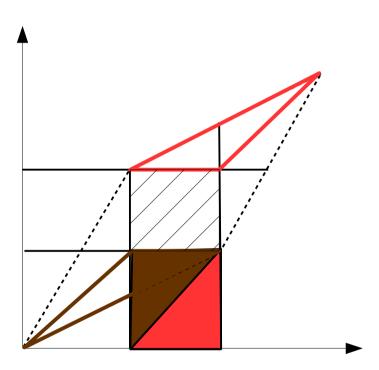
- Blue and red triangles have the same area
 - 1/2 base * height



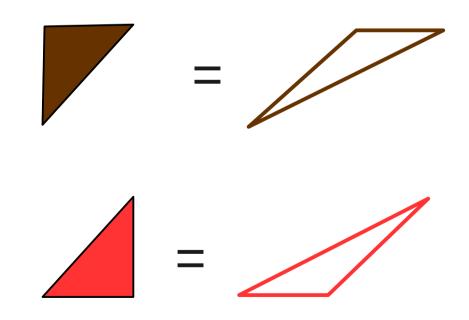
• These are the same area



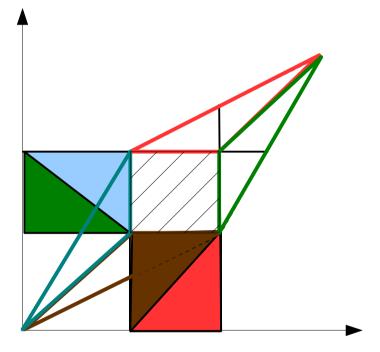




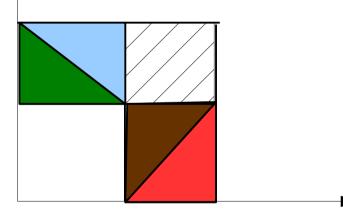
• In the same way, these are the same area



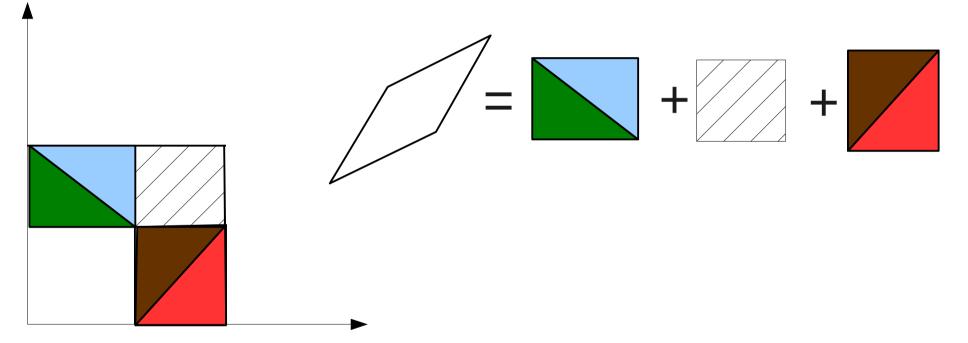
• All together



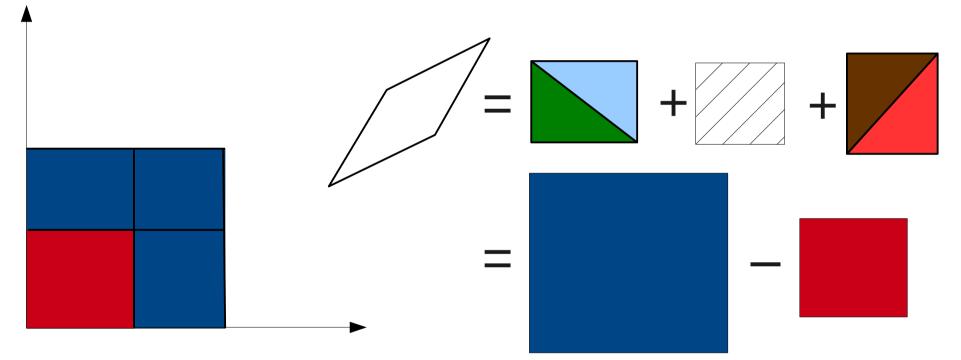
- All together
 - This is the parallelogram area



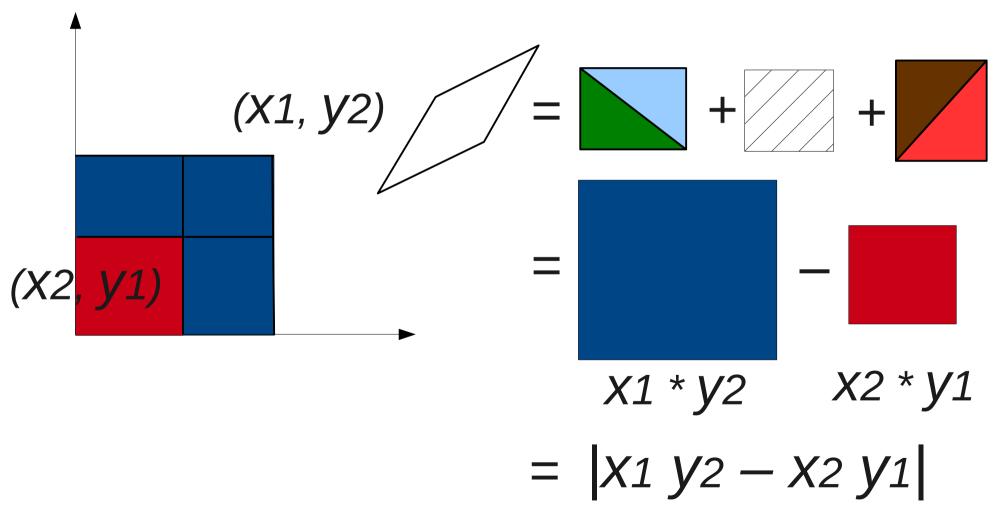
• Breakdown the area

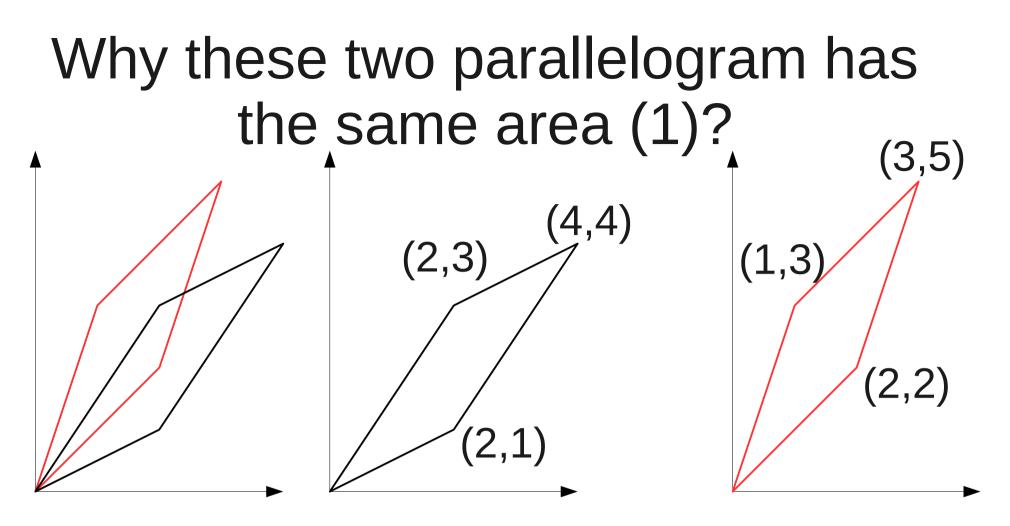


• Breakdown the area

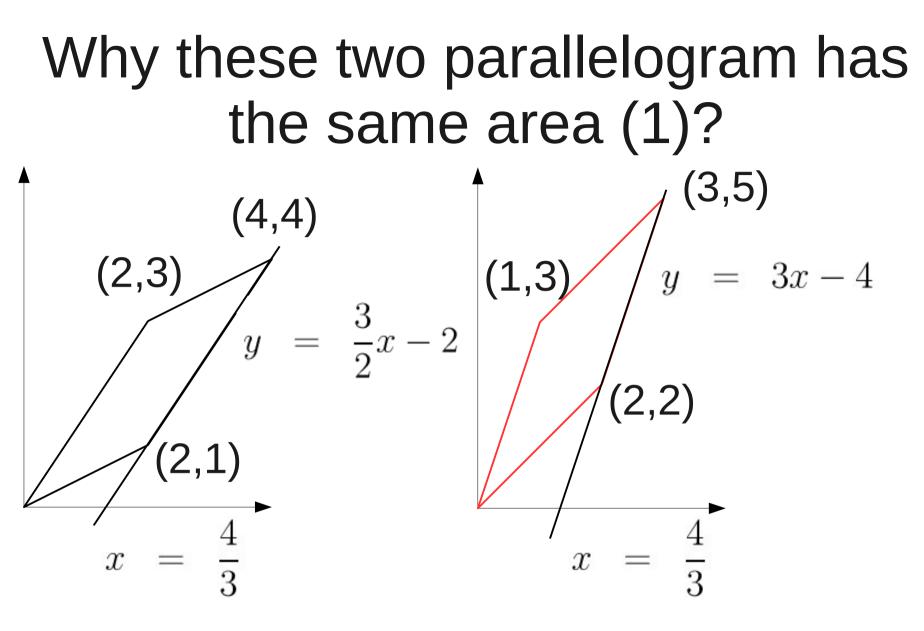


Put the coordinates



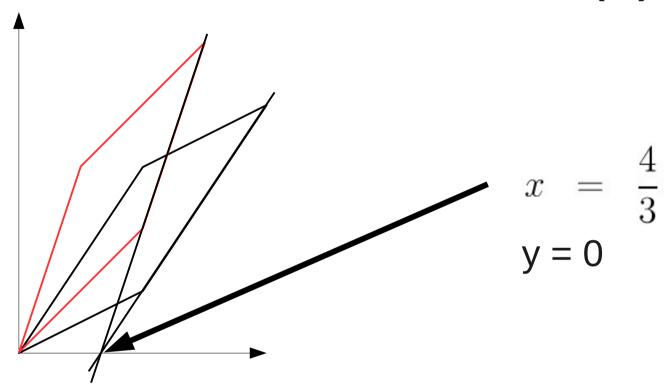


- These parallelograms have the same area
- But hard to see from the picture...
- [1] Gilbert Strang, Introduction to linear algebra, 4th ed. Chapter 5.3, Question 19

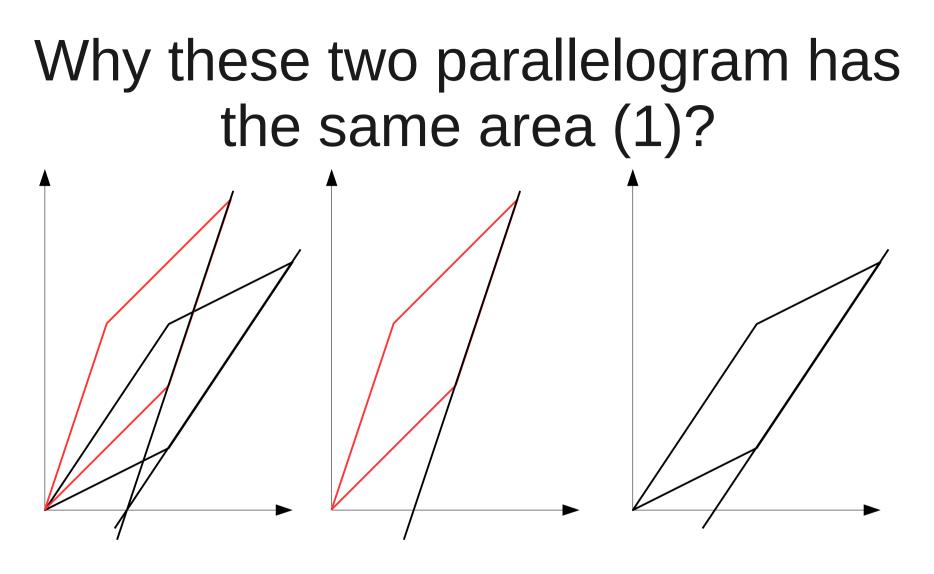


 The line equation tells us y=0 points are the same

Why these two parallelogram has the same area (1)?



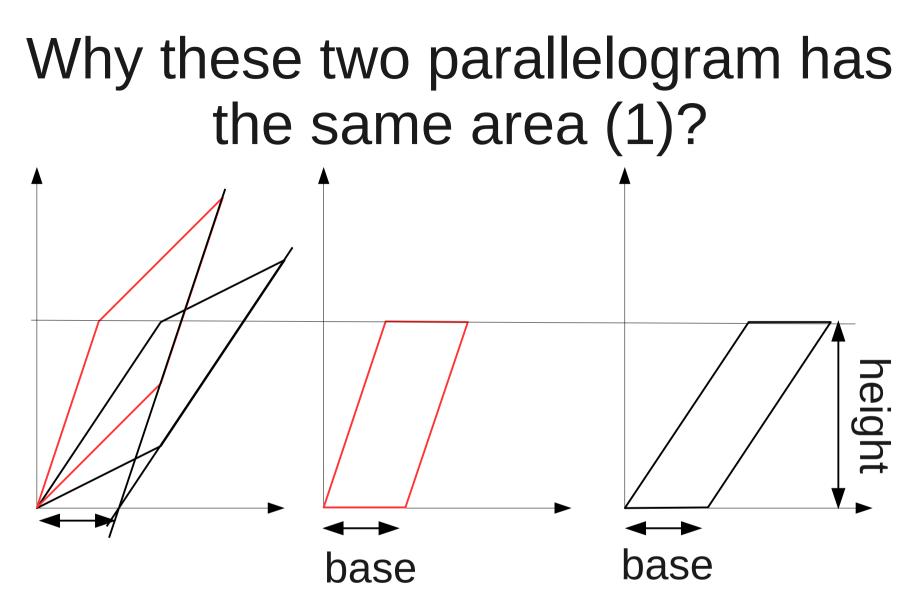
 The line equation tells us y=0 points are the same



- Now we shear the parallelogram
 - Note: parallelogram area doesn't change if the shear follows the parallel line

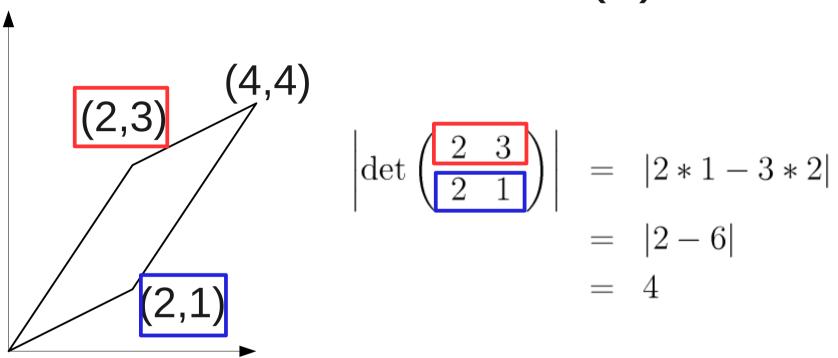
Why these two parallelogram has the same area (1)?

- Now we shear the parallelogram
 - Note: parallelogram area doesn't change if the shear follows the parallel line

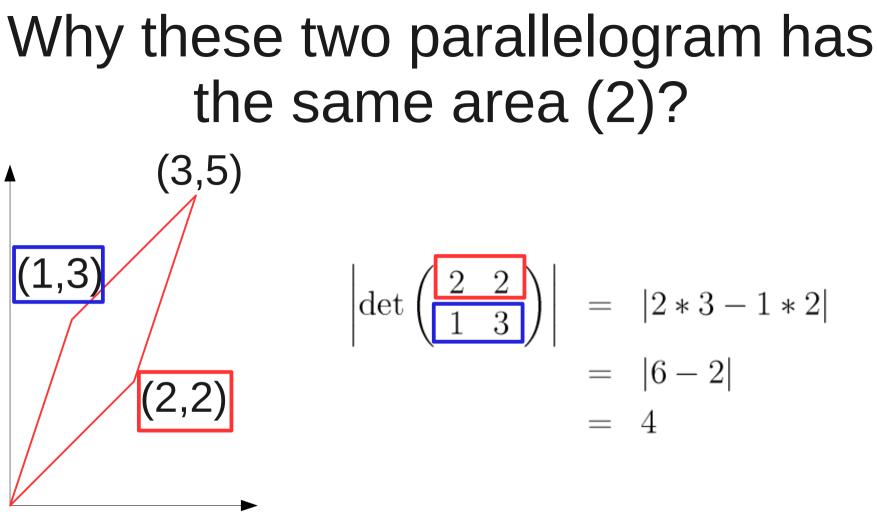


- Base and height are the same
 - The same area!

Why these two parallelogram has the same area (2)?

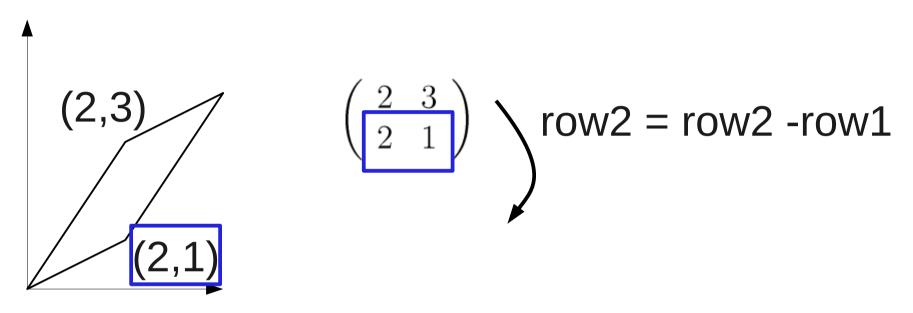


• Of course you can compute the determinant.

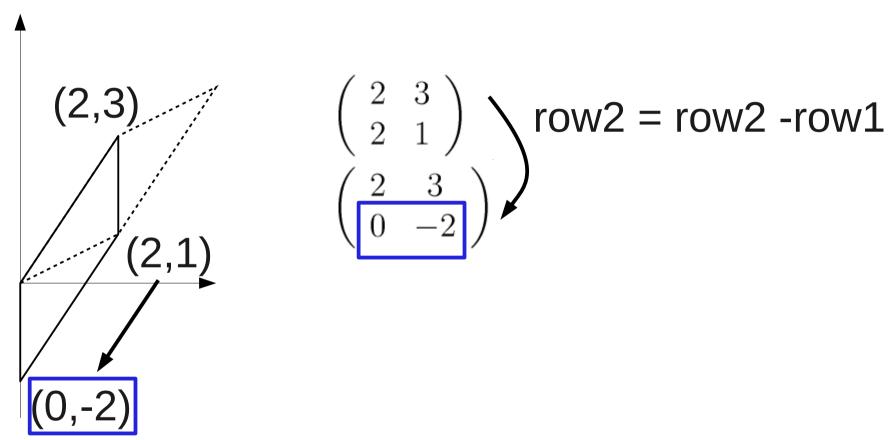


• Of course you can compute the determinant.

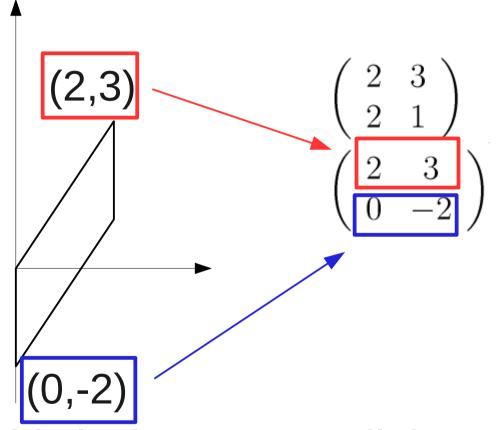
- Area = 4
- The same area! But this might not be so intuitive.



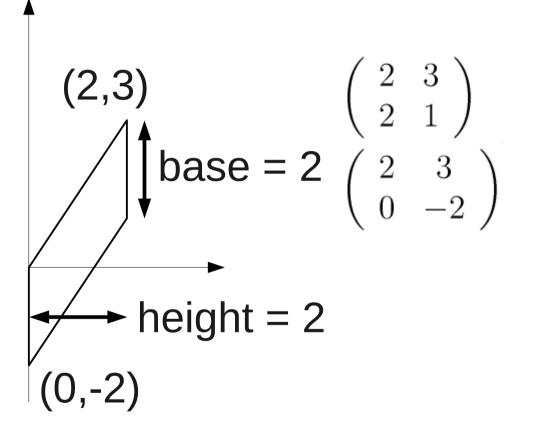
Elimination doesn't change the determinant (= area)



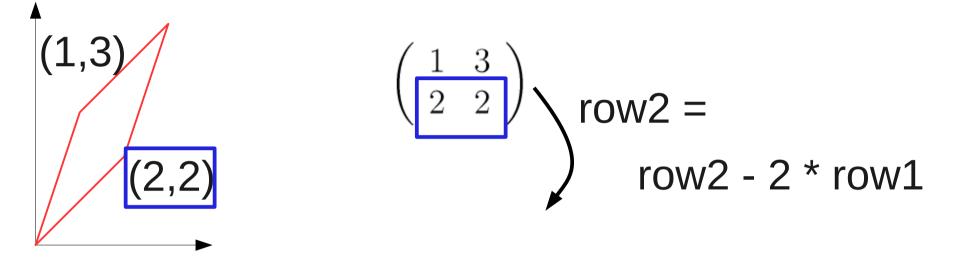
- Elimination doesn't change the determinant (= area)
- Shear the parallelogram



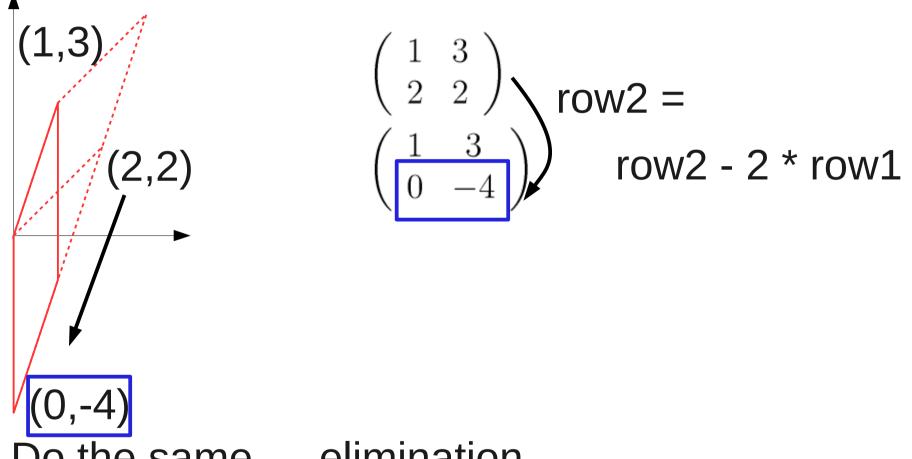
- This is the new parallelogram
- See how the matrix tells the parallelogram



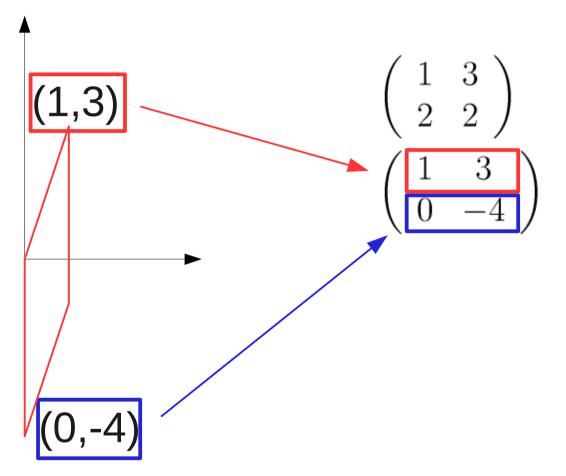
• Now the area is 4



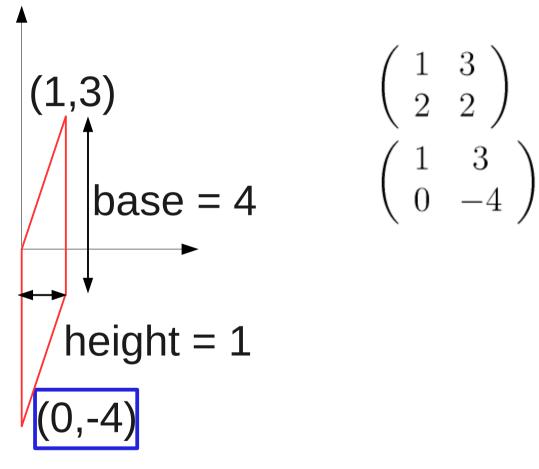
• Do the same ... elimination



Do the same ... elimination



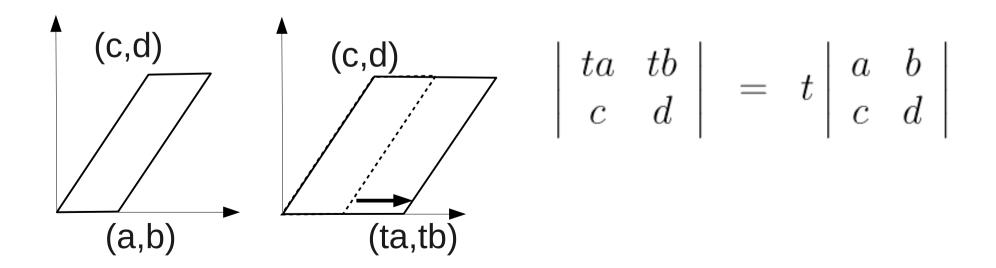
• Here is the new matrix



• The area is 4

Determinant's linearity

- The determinant is a linear function of each row separately (e.g., [1] p.246, property 3)
 - Multiply row1 by any number t
 - determinant is *t* times larger = area is *t* times larger



Determinant's linearity

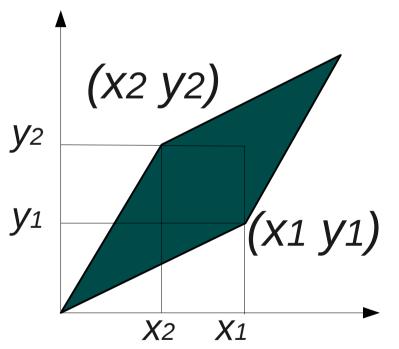
- The determinant is a linear function of each row separately (e.g., [1] p.246, property 5)
 - We saw a shear is elimination
 - I times row 1 from row 2 ... no change the area/det

Determinant's linearity

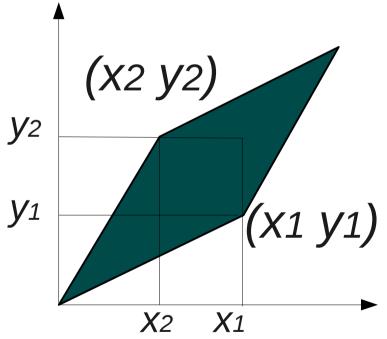
- The determinant is a linear function of each row separately (e.g., [1] p.246, property 5)
 - We saw a shear is elimination
 - I times row 1 from row 2 ... no change the area/det

Conclusion: area of parallelogram

- |x1 y2 x2 y1|
- = determinant
- Parallelogram doesn't change the area when shear
- It's same to the elimination
 - Determinant doesn't change when elimination is performed (= sheared)



- There are many related topics
 - Cross product ... k-forms
 - Jacobian
 - Stokes' theorem
 - First fundamental form
- All related with parallelogram/parallelopipe



References

- [1] Gilbert Strang, Introduction to Linear Algebra 4^{th} ed.
- [2] Gerald Farin & Dianne Hansford, Practical Linear Algebra, A Geometry Toolbox
- [3] Thomas A. Garrity, All the Mathematics You Missed: But Need to Know for Graduate School