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I N F O R M A T I KIntroduction : Motivation
Motivation

• Repairing damaged images
• scratches on pictures or old films

• Fill in missing part of images
• Images synthesized by IBR, etc.

• Delete unwanted objects on an image
• subtitles, logos, microphones, ...
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I N F O R M A T I KIntro: Repairing damages
Repairing damaged images

• scratches on pictures or old films

Photo from :
“Image Inpainting,”
M. Bertalmìo, et al.,
SIGGRAPH 2000.

http://www.ece.umn.edu/users/marcelo/restoration.html
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I N F O R M A T I KIntro: Fill-in hole
Fill in missing part of images

• Images synthesized by IBR, etc.

White triangles:
• occlusions
• registration

errors
• etc..
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I N F O R M A T I KIntro : Delete objects
Delete unwanted objects on an image

• subtitles, logos, microphones, ...
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I N F O R M A T I KDamaged pixels
What are damaged pixels? / How to detect them?

• Image sequences : Assuming temporal coherence
• 3D Template matching, 3DMMF (3D

multi-level median filter), 3D autoregressive
model (A.C. Kokaram, et al., “Detection of Missing
Data in Image Sequences,” 1995)

• One image : Hard to say
• Unwanted object can not be detected

automatically

• Here, we should manually specify restoration
area
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I N F O R M A T I KImage Restoration
• Solving PDE :

• diffuses intensity from boundary pixels
• can keep smoothness of image
• can not reconstruct details

• Texture synthesis :
• searches similar patterns and arranges them
• can reconstruct details
• can not reconstruct smoothness of image

Question
Can we combine both advantages without includ-
ing disadvantages?
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I N F O R M A T I KPDE method
• Anisotropic diffusion

• M. Bertalmìo, et al., “Image Inpainting”,
SIGGRAPH 2000

• Isotropic diffusion
• M. M. Oliveria, et al., “Fast Digital Image

Inpainting,” VIIP 2001
• Interpolating height field with bicubic B-spline

surface

⇓

Assuming image height field continuity
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I N F O R M A T I KPDE method : Example (1)
Input Image
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I N F O R M A T I KPDE method : Example (1)
Mask Image
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I N F O R M A T I KPDE method : Example (1)
Image with Mask
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I N F O R M A T I KPDE method : Example (1)
Fast Digital Image Inpainting : Gaussian diffusion
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Image Inpainting : Anisotropic diffusion
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I N F O R M A T I KPDE method : Example (2)
Input Image
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Fast Digital Image Inpainting : Gaussian diffusion
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Image Inpainting : Anisotropic diffusion
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I N F O R M A T I KPDE method : Hard case
Input Image
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I N F O R M A T I KPDE method : Hard case
Image Inpainting : Anisotropic diffusion
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I N F O R M A T I KPDE method : Pros & Cons
PDE based methods

• Advantages :

• Keeping boundary conditions
• Keeping inside area’s continuity

• Disadvantages :
• Too much smoothing inside the masked area
• High frequency component is hard to

reconstruct
→ Anisotropic diffusion tries to recon-

struct high frequency part, but it is
limited
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I N F O R M A T I KTexture synthesis (1)
What is a texture?
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I N F O R M A T I KTexture synthesis (1)
What is a texture?

Texture: An image that exhibits spatial homogeneity
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I N F O R M A T I KTexture synthesis (2)
Using spatial homogeneity for synthesis

Input

⇒

Output
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I N F O R M A T I KTexture synthesis: Classification
• Procedure based

• Fractal, Cellular textures (Fleischer 1995),
Reaction diffusion (Turk 1991)

• Statistics analysis and synthesis
• Pyramid-Based Texture Analysis/Synthesis

(Heeger 1995)
• Texture Mixing and Texture Movie Synthesis

Using Statistical Learning (Bar-Joseph 2001)

• Non-parametric Sampling
• Texture Synthesis by Non-parametric

Sampling (Efros 1999)
• Fast Texture Synthesis Using Tree-Structured

Vector Quantization (Wei 2000)
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I N F O R M A T I KNon-parametric Sampling (1)

Initialize target image with random color pixels
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I N F O R M A T I KNon-parametric Sampling (1)

Search similar kernel (red shape) on seed image
transfer a pixel
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I N F O R M A T I KNon-parametric Sampling (2)
• Advantage :

• Can deal with high frequency components

• Disadvantages :
• Does not care about continuity/global

structure
• Not suitable for non-homogeneous textures

• Many improvements
• Multiresolution synthesis (Wei 2000, ...)
• Coherent match method (Ashikhmin 2001)
• Image Analogies (Hertzmann 2001)
• Patch-Based Sampling (Efros 2001, Liang

2001, Nealen 2003, Cohen 2003...)
• ...
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I N F O R M A T I KOur method
Return to the Question

Can we combine both advantages without includ-
ing disadvantages?

• Low frequency part:
Global structure/large gradient area

⇒ Solving PDE
• High frequency part:

Texture/detail structure

⇒ Non-parametric Sampling
• To combine both methods :

⇒ Frequency decomposition
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I N F O R M A T I KThe Algorithm
Input Image

• Red part will be reconstructed
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I N F O R M A T I KThe Algorithm
Fill in hole region with diffusion

⇒

• Scratch and Text region is well reconstructed
• Large area : Problematic
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I N F O R M A T I KThe Algorithm
Frequency Decomposition

⇒ ⇒

• Using FFT (DCT)
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I N F O R M A T I KThe Algorithm
Extract High Frequency Part

⇒ +

• (High frequency image is gamma corrected)
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I N F O R M A T I KThe Algorithm
Multiresolution Analysis

⇒ +
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I N F O R M A T I KThe Algorithm
Reconstruct by Non-Parametric Sampling (Level 2)

⇒ +
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I N F O R M A T I KThe Algorithm
Reconstruct by Non-Parametric Sampling (Level 1)

⇒ +
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I N F O R M A T I KThe Algorithm
Reconstruct by Non-Parametric Sampling (Level 0)

⇒ +
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I N F O R M A T I KThe Algorithm
High Frequency part is reconstructed

⇒ +
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I N F O R M A T I KThe Algorithm
Combine them together

⇒

= +
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I N F O R M A T I KComparison

input
texture

non-
parametric
sampling
(texture
synthesis)

image
inpainting

our method
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I N F O R M A T I KDecomposition parameter (1)
• Question

• What frequency is the low/high frequency?
• How can we choose the frequency

decomposition parameter?
• Frequency decomposition parameter : κ

Upper bound for the low frequencies

κ = 2 κ = 4 κ = 8 κ = 16
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I N F O R M A T I KDecomposition parameter (2)
• Hypothesis

1. If the low frequency part is sufficiently
removed, the rest part is more like a texture

2. Spatial homogeneity can be measured by
autocorrelation

• Method
• Calculate the autocorrelation matrices of each

κ

• Compute the SD (standard deviation) of the
matrices

• Experimentally, we choose κ at SD ≤ 0.001
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I N F O R M A T I KCorrelation between κ and SD
• Four example images (images will be shown up)
• SD is small when κ is large
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I N F O R M A T I KResults : Painting
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I N F O R M A T I KResults : Posters
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I N F O R M A T I KResults : Wall
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I N F O R M A T I KResults : Tables
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I N F O R M A T I KResults : Excursion 1
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I N F O R M A T I KResults : Cablecar
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I N F O R M A T I KResults : Excursion 2

image
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input
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I N F O R M A T I KResults : Excursion 2

image inpainting
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I N F O R M A T I KResults : Excursion 2

multiresolution texture synthesis
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I N F O R M A T I KResults : Excursion 2

our method
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I N F O R M A T I KConclusion
• Propose a new image restoration method
→ Frequency decomposition for combining

image inpainting and texture synthesis
→ A criterion for deciding the decomposition

parameter κ

• Future Work
• Fuzzy mask
• Image inpainting guided texture synthesis
→ using image inpainting to suggest the

transfer region
• Expand to 3D

• Image sequences
• Fill in 3D holes
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