

Mesh Segmentation Driven by Gaussian Curvature

¹<u>Hitoshi Yamauchi</u>, ²Stefan Gumhold, ¹Rhaleb Zayer, and ¹Hans-Peter Seidel

¹MPI Informatik, Saarbrücken, Germany ²Technical University of Dresden, Germany

October 13, 2005

[Sander et al. 03]

PG2005 Yamauchi, Hitoshi

[Liu et al. 04]

Why segmentation?

- A basic geometry processing tool for:
 - Shape understanding
 - Mesh simplification
 - Mesh matching, retrieval
 - Animation, morphing (parts extraction)
 - Texture mapping

planck institut

informatik

[Funkhouser et al. 04]

Segmentation Zoo

- Many criteria for segmentation
 - Application dependent
 - Need a definition of criteria/application
- Our main application
 - Texture mapping (parameterization)
 - Achieve low distortion parameterization
 - Goal of segmentation
 - Generate patches as developable as possible

Outline

Related work

- Our approach
- Gauss area for surface segmentation
- t-flooding algorithm
- Demo
- Results
- Conclusion

Related work

- Segmentation based on fitting primitives
 - Developable charts ... e.g., triangle strip
 - No consideration on boundary condition of each chart

[Cohen-Steiner

et al. 04

PG2005 Yamauchi, Hitoshi

- Trade off between the # of charts and developability
- Normal (plane)
 - Can not account for cylinders, cones
- Uni-axial union of cones (D-Chart)

[Mitani et al. 04]

October 13, 2005

5

[Julius et al. 05]

Related work

- Parameterization driven segmentation
 - Account for the parameterization distortion during the segmentation process
 - Parameterization and segmentation are carried on simultaneously
 - To get segmentation, segmentation is needed

Outline

- Related work
- Our approach
- Gauss area for surface segmentation
- t-flooding algorithm
- Demo
- Results
- Conclusion

Our approach

- Introduce a new measure for developability
- Gauss area (area on Gauss map)
 - Captures Gaussian curvature properties
 - Avoids the numerical difficulties of using Gaussian curvature directly for segmentation
- Distribute Gauss area over the charts
 - *t*-flooding growing (time parameterized flooding)
 - High Gauss area is added to chart later
 - \Rightarrow High Gauss area parts tend to be cut

Contributions

- Segmentation driven by a variant of Gaussian curvature
- Gauss area: Normal distribution on Gauss map
 - Robust and simple computation
- *t*-flooding algorithm
 - Control over the relative growing process of the charts
 - Reduce boundary artifacts

Outline

- Related work
- Our approach

Gauss area for surface segmentation

- *t*-flooding algorithm
- Demo
- Results
- Conclusion

Compute normals

Gauss area: area on Gauss map

- Compute normals
- Project the normals on a unit sphere

PG2005 Yamauchi, Hitoshi

planck institut

informatik

Gauss area: area on Gauss map

- Compute normals
- Project the normals on a unit sphere
- Compute area on Gauss map

olanck institut

informatik

Multiple normals

- Triangle mesh: a piecewise linear approximation of a shape
 - Not assume everything is smooth
 - At sharp creases and corners, consider the multiple normals
 - Multiple normals by thresholding

Gauss area computation

At the corner, multiple normals are generated by thresholding

Gauss area computation

- At the corner, multiple normals are generated by thresholding
- Gauss area is assigned to the vertex

Gauss area computation

- At the corner, multiple normals are generated by thresholding
- Gauss area is assigned to the vertex
- Similarly, a Gauss area is assigned to edges and triangles

October 13, 2005

Gauss area properties

- Captures Gaussian curvature properties
- Robust and simple computation, always in [0, 4π]
- Developable surfaces have no Gauss area

October 13, 2005

October 13, 2005

PG2005 Yamauchi, Hitoshi

20

October 13, 2005

PG2005 Yamauchi, Hitoshi

max planck institut

informatik

October 13, 2005

Gauss area & Gaussian Curvature

October 13, 2005

 Gauss area can capture the Gaussian curvature properties

Gauss area & Gaussian Curvature

 The distribution of the Gauss area values is compact and yields a stable integration for our segmentation purpose.

planck institut

informatik

	Range	σ
Garea vtx, edge,	[0, 1.42], [0, 0.46],	0.064, 0.052,
triangle	[0, 0.11]	0.0094
Welch 94	[-6.7x10^3, 5.7x10^3]	5.67x10^2
Goldfeather 04	[-2.9x10^6, 6.6x10^3]	4.1x10^4
		dfactbor of al 04
Gauss area (Tri.)	Welch et al. 94 Go	lateather et al.04
October 13, 2005	PG2005 Yamauchi, Hitoshi	adric 24

Outline

- Related work
- Our approach
- Gauss area for surface segmentation
- <u>t-flooding algorithm</u>
- Demo
- Results
- Conclusion

t-flooding algorithm

- Time parameterized flooding
 - Estimate Gauss area of each chart at time t
- Distributes Gauss area on patches
 - Equalize Σ (Gauss area of chart i) among charts
 - Based on Lloyd Max iterative growing algorithm
 - Control over the patch growing speed
 - Multiple priority queue implementation
 - Offset computation

lanck institut

Control over the patch growing speed

- Gauss area doesn't consider the 3D triangle shape
- At time t, all patch should have
 - similar 3D areas
 - similar Gauss areas

- Candidate triangles (A & B) have the same Gauss areas but different shapes
- \Rightarrow Consider their 3D areas

olanck institut

informatil

Grow a triangle

- No edge/vertex closing
 - Garea(Ti) + Garea(Ei)
- With edge/vertex closing
 - Garea(Ti) + Garea(Ei) + Garea(Ej) + Garea(Vi)
- Vi has Gauss area, closing tends to be avoided
 - Cuts favor creases and corners

October 13, 2005

Grow a triangle

- No edge/vertex closing
 - Garea(Ti) + Garea(Ei)
- With edge/vertex closing
 - Garea(Ti) + Garea(Ei) + Garea(Ej) + Garea(Vi)
- Vi has Gauss area, closing tends to be avoided
 - Cuts favor creases and corners

October 13, 2005

Multiple priority queue implementation

- Use a Main priority queue and Patch priority queues
 - Main priority queue determines which chart grows next according to Σ (Gauss area in chart i)
 - Patch priority queue (PPQ) determines which triangle will be added to the chart

planck institut

informatik

- Early blocking problem
 - Computation of patch center has difficulty in a low Gauss area part
 - \rightarrow Misleads Lloyd Max algorithm

- Early blocking problem
 - Computation of patch center has difficulty in a low Gauss area part
 - \rightarrow Misleads Lloyd Max algorithm

- Early blocking problem
 - Computation of patch center has difficulty in a low Gauss area part
 - \Rightarrow Misleads Lloyd Max algorithm

October 13, 2005

- Early blocking problem
 - Computation of patch center has difficulty in a low Gauss area part
 - \Rightarrow Misleads Lloyd Max algorithm

- Early blocking problem
- Patches growing too fast are punished during the iterative process with a time offset
- The use of damping factor leads convergence

- Early blocking problem
- Patches growing too fast are punished during the iterative process with a time offset
- The use of damping factor leads convergence

- Early blocking problem
- Patches growing too fast are punished during the iterative process with a time offset
- The use of damping factor leads convergence

- Early blocking problem
- Patches growing too fast are punished during the iterative process with a time offset
- The use of damping factor leads convergence

Outline

- Related work
- Our approach
- Gauss area for surface segmentation
- t-flooding algorithm

Demo

- Results
- Conclusion

Outline

- Related work
- Our approach
- Gauss area for surface segmentation
- t-flooding algorithm
- Demo
- Results
- Conclusion

[MCGIM]

[VSA]

[t-flooding]

October 13, 2005

October 13, 2005

Both methods have similar low distortion in these parts

[t-flooding]

[MCGIM]

October 13, 2005

October 13, 2005

October 13, 2005

Both methods have similar low distortion in these parts

[VSA]

[t-flooding]

PG2005 Yamauchi, Hitoshi

planck institut

PG2005 Yamauchi, Hitoshi

planck institut

informatik

Conclusion & Future work

- Conclusion
 - Segmentation driven by a variant of Gaussian curvature
 - Balanced Gauss area distribution among charts
 - Control of patch grow speed thanks to the new t-flooding algorithm
- Future work
 - Improve thresholding for multiple normals
 - Apply *t*-flooding algorithm to other segmentation methods

ck institut

Thank you. Questions?

Result

Parameterization distortion

model	Нарру	Rocket	Santa
MCGIM	8.1(7.8)	29.1(39.3)	22.9(11.6)
VSA	12.4(12.6)	28.2(21.5)	60.1(47.1)
<i>t</i> -flooding	7.3(4.7)	17.9(7.3)	17.2(8.6)
# of triangles	19976	80354	151558
Elapsed time	20.6	91.5	363

Average (standard deviation) of L^2 geometric distortion

Geometric stretch(on a Pentium IV 1.7GHz Linux machine)

Result

Standard deviation of Gauss area distribution

model	Нарру	Rocket	Santa	
MCGIM	64.3	11.0	14.3	
VSA	69.0	17.3	18.9	
t-flooding	25.6	4.55	2.48	

Topology constraints

- Too keep disk like topology
 - t-flooding doesn't guarantee to keep each patch topology
- Two auxiliary tools
 - HandleCutter
 - Cut a high genus part to cylinders
 - LoopMargeCutter
 - Connect interior boundary loop with outside boundary

