

Feature Sensitive Mesh Segmentation with Mean Shift

H. Yamauchi¹, S. Lee², Y. Lee², Y. Ohtake³, A. Belyaev¹, H.-P. Seidel¹

¹MPI Informatik, Saarbrücken, Germany ²POSTECH, Pohang, Korea ³RIKEN, Saitama, Japan

Introduction (1): Why segmentation?

Mesh Segmentation = basic GMP tool

- Shape understanding
- Mesh simplification
- Mesh matching, retrieval, animation
- Texture mapping

[Liu et al. 04]

[Cohen-Steiner et al. 04] [Funkhouser et al. 04]

[Sander et al. 03]

Introduction (2)

What is the "meaningful" segmentation?

- Segmentation zoo ... many criteria, applications
- Perceptually meaningful features
 - High variation points of surface normals (psychological experiments [Hoffman and Richards])
 - -Feature = normals

Main idea behind our approach:

- Enhance features via clustering the field of normals
 - No change geometry. Change normals.
- Segment a mesh according to the enhancement

Contributions

Without feature enhancement

With feature enhancement

- Exploiting feature sensitivity
 - -Feature enhancing method
 - -Segmentation method which exploit enhanced features

Our approach

Enhance features

 Use a segmentation method adapted to enhanced features

Feature enhancement

segmentation using enhanced features

Enhancing features

- Features = points of high variation of surface normals
- Clustering normals
 - Enhancing the important features + ignoring small-scale surface details

Conventional mesh segmentation doesn't work well because of small-scale surface details

The same segmentation method is applied to the same mesh with modified (clustered) normals

Overview Demo

 Without feature enhancement with K-means

 Feature sensitive segmentation method

Outline

- Feature enhancement
 - -Mean Shift: What is Mean Shift?
 - -Mean Shift on a mesh
- Feature sensitive segmentation
 - Segmentation algorithm
 - -Demo
- Experimental results
- Conclusions

Mean Shift: overview

- Scattered data clustering in d-dim
- Theoretical foundation
- Only one intuitive parameter
 - -kernel support size: h

d-dim feature space scattered data

max planck institut informatik

Mean Shift: overview

- Scattered data clustering in d-dim [Fukunaga et al. 75]
- Theoretical foundation
- Only one intuitive parameter
 - -kernel support size: h

$$\nabla \hat{f}(\mathbf{x}) = \frac{2c}{Nh^{d+2}} \sum_{i=1}^{N} g\left(\left\| \frac{\mathbf{x} - \mathbf{x}_i}{h} \right\|^2 \right) \mathbf{m}(\mathbf{x})$$

$$\begin{array}{|c|c|}\hline \textbf{Mean} & \mathbf{m}(\mathbf{x}) = \frac{\sum_{i=1}^{N} \mathbf{x}_{i} g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_{i}}{h}\right\|^{2}\right)}{\sum_{i=1}^{N} g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_{i}}{h}\right\|^{2}\right)} - \mathbf{x} \\ \textbf{vector} & \end{array}$$

• Mode detection : $\nabla \hat{f}(\mathbf{x}) = 0$

d-dim feature space clustering example

Mean Shift vector: m(x)

Find the local densest direction

$$\mathbf{m}(\mathbf{x}) = \frac{\sum_{i=1}^{N} \mathbf{x}_{i} g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_{i}}{h}\right\|^{2}\right)}{\sum_{i=1}^{N} g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_{i}}{h}\right\|^{2}\right)} - \mathbf{x}$$

∇ Kernel weighted mean

current position

Mean Shift vector

Objective: Find the densest region
 June 17, 2005
 Yamauchi, Hitoshi

support

Objective: Find the densest region

June 17, 2005

Yamauchi, Hitoshi

- Kernel support
- Center of region
 - Center of mass

Objective: Find the densest region

- Kernel support
- Center of region
 - Center of mass
 - Mean Shift vector

Objective: Find the densest region

June 17, 2005

Yamauchi, Hitoshi

- Kernel support
- Center of region
- Center of mass
- Mean Shift vector

Objective: Find the densest region

- Kernel support
- Center of region
- Center of mass
- Mean Shift vector

Objective: Find the densest region

- Kernel support
- Center of region
- Center of mass
- Mean Shift vector

Objective: Find the densest region

June 17, 2005

Yamauchi, Hitoshi

- Kernel support
- Center of region
- Center of mass
- Mean Shift vector
- Converged center
- Attraction point

June 17, 2005

Yamauchi, Hitoshi

20

Outline

- Feature enhancement
 - -Mean Shift: What is Mean Shift?
 - -Mean Shift on a mesh
- Feature sensitive segmentation
 - -Segmentation algorithm
 - -Demo
- Experimental results
- Conclusions

Feature enhancement: Clustering mesh normals with Mean Shift

- Feature space
 - -6-d points (position and normal) (5-d)

Feature enhancement: Clustering mesh normals with Mean Shift

- Mean Shift process
 - -converge to attraction points in 6-dim space (basin of attraction)

Feature enhancement: Clustering mesh normals with Mean Shift

- Back projecting normal to the original positions
 - -Feature preserving normal filtering
 - Preprocessing for segmentation

Enhanced normal example

- Noisy octahedron : (additive Gaussian noise)
- Enhanced normal
 - Normals are changed. No change geometry.

June 17, 2005

Yamauchi, Hitoshi

25

Feature preserving noise removal with Mean Shift

- Denoise with local estimated normal [Ohtake et al. 01]
- Normal estimation by Mean Shift

max planck institut

informatik

Feature preserving smoothing

max planck institut informatik

with Mean Shift

input

 $h_n = 0.2$

 $h_n = 0.5$

 $h_n = \infty$

Yamauchi, Hitoshi

Outline

- Feature enhancement
 - -Mean Shift: What is Mean Shift?
 - -Mean Shift on a mesh
- Feature sensitive segmentation
 - –Segmentation algorithm
 - -Demo
- Experimental results
- Conclusions

How to create a segmentation?

- Enhance features ≠ Segmentation
 - -Points are still scattered in the feature space

How to create a segmentation?

- Clustering ≠ Segmentation
 - -Points are still scattered in the feature space
 - Segmentation with respecting the clustering

On a mesh: position & normal

Feature space

Feature sensitive segmentation

How can we segment the points in the feature space?

- Region growing [Shlafman 02, Sander 03, Cohen-Steiner 04, Comaniciu 02, Lèvy 02,...]
- Hierarchical clustering [Garland 01, ...]
- Spectral analysis [Liu 04, ...]
- Hybrids, others,

Feature sensitive segmentation

Using iterative region growing algorithm [Lloyd 82, Shlafman et al. 02, Sander et al. 03,...]

- Segmentation with Volonoi-like region
 - Calculate MST (Minimum Spanning Tree) from seeds
 - Seed optimization with Lloyd algorithm

Growing from seeds with feature space distance

Feature sensitive segmentation

- Selecting distance metric is the key of growing
 - -Feature
 - Enhanced dihedral angle
 - -Mesh connectivity
 - keep topology
- Segmentation method which adapts enhanced features
- → Feature enhancement + segmentation for it

Outline

- Feature enhancement
 - -Mean Shift: What is Mean Shift?
 - -Mean Shift on a mesh
- Feature sensitive segmentation
 - Segmentation algorithm
 - -Demo
- Experimental results
- Conclusions

Outline

- Feature enhancement
 - -Mean Shift: What is Mean Shift?
 - -Mean Shift on a mesh
- Feature sensitive segmentation
 - -Segmentation algorithm
 - -Demo
- Experimental results
- Conclusions

Experimental Results (1)

Fandisk: 12,944 tris., 20 charts

- MCGIM[Sander 03]
- -31.2 s

-12.7 s

hg = 0.05, hn = 0.3

Experimental Results (2)

Mannequin: 21,680 tris., 30 charts

-67.5 s

VA [Cohen-Steiner 04]

-32.1 s

VA [Cohen- Our method

- 11.4+90.4 s

$$- hg = 0.1, hn = 0.3$$

Experimental Results (3)

Camel: 78,144 tris., 80 charts

- MCGIM
- -1659 s

- VA
- -256 s

- Our method
- 11.5+1598 s
- hg = 0.015, hn = 0.3

Experimental Results (5)

Effect of support size and segmentation

Black disk shows the geometric support size of Mean Shift

- Too small → small structure is considered features
- Too large → some features are smooth out

Experimental Results (4)

Cow: 23,216 tris., 90 charts

-185 s

- VA
- -22.9 s

- Our method
- 0.95+225 s
- hg = 0.015, hn = 0.3

max planck institut

Conclusion & Feature work

- Perceptually salient segmentation
- Enhancing surface features
 - → feature-sensitive
- Segmentation via clustering
- User-specified parameters
 - -feature size + number of charts
- Selecting the kernel support size
- K-means clustering instead of Mean Shift? (only one parameters)
- Can be easily extended to other criteria. (Curvatures, etc.)

Questions? (clusters of questions are also welcome)

Resources. Thank you.

- Mean Shift Intuitive description slides
 - Advanced Topics in Computer Vision, Simon Ullman,
 Michal Irani, and Ronen Basri, Second semester
 (2003/04) course, 9 Mean Shift.
 - http://www.wisdom.weizmann.ac.il/~deniss/ vision_spring04/lectures_full.html
- Figures with [cite name] comes from the authors' paper or their web pages
- European FP6 NoE grant 506766 (AIM@Shape)
- Korean Ministry of Education through BK21program
- Korean Ministry of Information and Communication through the ITRC support