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Abstract

Feature sensitive mesh segmentation is important for
many computer graphics and geometric modeling applica-
tions. In this paper, we develop a mesh segmentation method
which is capable of producing high-quality shape partition-
ing. It respects fine shape features and works well on vari-
ous types of shapes, including natural shapes and mechan-
ical parts. The method combines a procedure for cluster-
ing mesh normals with a modification of the mesh charti-
fication technique in [23]. For clustering of mesh normals,
we adopt Mean Shift, a powerful general purpose technique
for clustering scattered data. We demonstrate advantages of
our method by comparing it with two state-of-the-art mesh
segmentation techniques.

1. Introduction

Similar to the role that image segmentation plays in im-
age analysis and understanding, proper surface partition-
ing is one of the most important operations in geometric
modeling and processing. Polygonal meshes remain a pre-
ferred representation for surface data because of their abil-
ity to approximate complex shapes, algorithmic simplicity,
and visualization efficiency. In particular, triangle meshes
are widely used in many engineering, medical, and enter-
tainment applications. In this paper, we deal with segmen-
tation of surfaces approximated by triangle meshes.

Mesh segmentation is an active research area and has nu-
merous applications in texture atlas generation [14, 15, 23,
27], shape analysis, recognition, and matching [6,16,18,22],
shape simplification [3, 9, 12], and shape modeling and re-
trieval [8,13]. Mesh segmentation techniques can be classi-
fied to patch-type and part-type [25]. In patch-type segmen-
tation, a mesh is partitioned into patches which are topo-
logical disks. Part-type segmentation divides a mesh into

meaningful parts, such as a head and legs of a horse, with-
out restricting the part topology. Mesh segmentation con-
sidered in this paper is patch-type and generates a chartifi-
cation of a triangle mesh.

In this paper, we propose a simple but effective technique
for improving existing mesh segmentation methods. The
main idea behind our approach can be summarized as pre-
liminary clustering of local geometric attributes associated
with the surface approximated by a given mesh. We imple-
ment a simple variant of this general idea and combine clus-
tering of mesh normals with a modification of the method
developed in [23]. It allows us to achieve a mesh segmenta-
tion which is more sensitive to salient surface features, com-
pared with the state-of-the-art methods of [3] and [23].

According to our numerical experiments, the Variational
Shape Approximation method [3] (we refer to it as the VSA
method) is extremely good for segmenting shapes com-
posed of regions with simple geometry and sharp features
(typically, models of mechanical parts). On the other hand,
the mesh chartification technique in [23, Section 4.1] (we
refer to it as the MCGIM method) is very capable of par-
titioning shapes with complex geometry (typically, natu-
ral shapes). It turns out that combining our procedure for
clustering mesh normals with a slight modification of the
MCGIM method results in a powerful mesh segmentation
technique which delivers high-quality results for both types
of shapes: natural shapes and mechanical parts.

We employ Mean Shift [2, 4, 7], a powerful general pur-
pose procedure for non-parametric clustering of scattered
data, for a practical implementation of the clustering part of
our approach. Specifically, given a triangle mesh, we con-
sider the triangle centroids equipped with triangle normals
as a scattered set of points in six-dimensional space. Then
Mean Shift is used for clustering the 6D points. Finally each
triangle is equipped with a modified normal corresponding
to the associated cluster center.

Previous geometric modeling application of mean shift
clustering includes feature space analysis of unstructured



volume data [24]. The feature space consists of geometry
and attributes of volume elements and the analysis with
Mean Shift was used to reveal the internal structure of 3D
scalar fields. The feature space analysis was later extended
to handle polygon meshes [26], where local parameteriza-
tion is used to implement the Mean Shift operation. In this
paper, we demonstrate that triangle normals can be success-
fully clustered directly using triangle centroids as 3D points
without local parameterization.

Recent studies [3, 11, 20] show that exploring geometric
information contained in the surface normal field is a key in-
gredient for feature sensitive shape processing. Our idea of
using clustered mesh normals can be considered as a fur-
ther development of a mollification technique of [10], em-
ployed as a preprocessing step for feature preserving mesh
smoothing and based on Gaussian smoothing of mesh nor-
mals. Due to its solid statistical foundation, Mean Shift can
generate more robust filtering of noisy mesh normals than
Gaussian smoothing. Moreover, mean shift filtering has an
advantage that we do not need to care about both dimen-
sionality of data set and mesh connectivity.

2. Mesh Normal Clustering with Mean Shift

Given a set of points (samples) X = {x1, . . .xN} ⊂ R
d

drawn from a probability density f(x), we want to estimate
the probability density function f(·) at point x. The kernel
density estimation method (Parzen-window estimation) es-
timates the probability density function by

f̂(x) =
1

Nhd

N
∑

i=1

K

(

x − xi

h

)

, (1)

where K (x) is the so-called kernel function satisfying

K (x) ≥ 0 and
∫

Rd

K (x) dx = 1

and h is a smoothing parameter called the bandwidth. Fig-
ure 1 shows an example of a reconstruction of a one-
dimensional probability density function using a Gaussian-
like kernel K(x).

Assume now that we are interested in subdividing scat-
tered data X into a set of clusters. It is natural to consider
the points where f̂(x) defined by (1) has local maxima as
centers of the clusters. The simplest method to find the lo-
cal maxima of (1) is to use a gradient-ascent process.

Assume that the kernel function K (x) is rotationally in-
variant

K (x) = c · k
(

‖x‖2
)

,

where k(x) is called the profile function and c is a normal-
izing constant
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Figure 1. Probability density function is esti-
mated from scattered data as the sum of ker-
nel functions associated with each point of
the data.

It is easy to see that
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where g(x) = −k′(x). The so-called mean shift vector
m(x) is given by

m(x) =
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A gradient-ascent process with an adaptive step size

y[j+1] = y[j] + m(y[j]), j = 0, 1, 2, . . . (2)

constitutes the core of the mean shift clustering procedure.
For clustering X = {x1, . . .xN} with Mean Shift, the fol-
lowing two steps are performed on each xi ∈ X :

1. Initialize y
[0]
i with xi;

2. Compute y
[j]
i according to (2) until convergence.

It can be shown in [4] that under some general assumptions
the sequences

{

y
[j]
i

}

converge to the points where f̂(x) de-
fined by (1) attains its local maxima.

The above clustering procedure can be generalized in a
number of ways [5,19,24,26,30,31]. One simple extension
consists of dealing with a set X , each element of which has
two components of different nature,

X = {xi = (pi,qi) : pi ∈ P, qi ∈ Q}.

In such a situation, it is convenient to use the mean shift
clustering procedure with separable kernels

f̂(x) =
1

Nhd1

1 hd2

2
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Input mesh Partitioning

Figure 2. Geometric idea behind the use of
clustering of mesh normals for mesh parti-
tioning purpose.

In this paper, we employ the mean shift procedure for
clustering mesh normals. Given a triangle mesh M con-
sisting of triangles {Ti}, we consider the triangle centroids
{ci} equipped with triangle normals {ni} as scattered data
X = {(pi,qi) = (ci,ni)} in R

6. For each cluster center
y

[c]
i = (p,q), we normalize its ‘mesh normal’ component

q and assign it to all the mesh triangles T corresponding to
the cluster.

Figure 2 demonstrates our idea of using clustering of
normals for mesh partitioning. For the sake of readability
and consistency, in the rest of the paper we use the nota-
tions hg and hn instead of h1 and h2, respectively.

In our current implementation, for both the triangle cen-
troids pi = ci and triangle normals qi = ni we use the
so-called Epanechnikov kernel which has a simple profile

kE(x) =

{

1 − x 0 ≤ x < 1
0 x > 1.

To accelerate the mean shift computation, we store the ge-
ometry information (3D locations of {ci}) using a k-D tree.
The point query process consists of the following two steps.

1. Given a query (p,q), we detect all points pi such that
‖pi − p‖ < hg .

2. For each detected point pi, we check whether its ‘nor-
mal’ counterpart qi satisfies ‖qi − q‖ < hn.

In our experiments, we have observed that our Mean
Shift based clustering of mesh normals can also be used
for adaptive mesh smoothing. Once the modified (clustered)
normals are obtained, a new mesh can be reconstructed from
the modified normals, as described in [21] (see also [28,29]
for similar approaches). As shown in Figure 3, varying the
bandwidth parameter hn used in the kernel for mesh nor-
mals leads to adaptive mesh smoothing with simultaneous
sharpening of surface creases at different geometric scales.
The parameter hn defines which normals are involved for
averaging in the mean shift procedure. On the other hand,
altering hg affects how many neighboring mesh vertices are
considered in the mean shift procedure. Choosing a larger
value for hg will lead to smooth out smaller mesh features.

3. Iterated Region Growing Segmentation

Once the mesh normals are prefiltered with Mean Shift,
we follow a general approach proposed in [23] and inspired
by the iterative Lloyd quantization method [17].

In initialization, the number of seeds starts from one and
a seed triangle is selected randomly. First, Phase 1 below is
performed. If the number of seeds has not reached the user
specified number of charts, the farthest triangle is marked
as a new seed. Otherwise, no new seed is added. Second,
Phase 2 below is used to find a center seed for each chart.
This combination of Phase 1 and Phase 2 procedures is re-
peated until all the seed positions are converged or the num-
ber of iterations exceeds a user defined threshold.

Phase 1: Chart growth. The distance between two adjacent
triangle faces, Ti and Tj , is defined by

distance(Ti, Tj) = ‖Nmi − Nmj‖, (3)

where Nm is the triangle normal obtained by mean shift
filtering. By performing the multi-source Dijkstra’s short-
est path algorithm with this distance, we can determine the
closest seed for each triangle.

In [23], a different definition of the distance is given by

distance(Ti, Tj) = (1 − (Nr · Nj))(‖ci − cj‖), (4)

where Ti is a triangle already included in a chart and Tj is
a candidate triangle to be added to the chart. Nr is the rep-
resentative normal of the chart, which is the average of nor-
mals of the current chart triangles. Nj is the normal of tri-
angle Tj . ci and cj are the centroids of Ti and Tj , respec-
tively.

Since the representative normal Nr is the average of cur-
rent chart triangles, Equation (4) does not fully respect fea-
tures of a mesh. On the other hand, Nr introduces the sta-
bility of the chart growing algorithm. If the distance is sim-
ply defined with the normal deviation of two adjacent tri-
angles, the effect of noise may be emphasized, e.g., on a
bumpy surface.

In contrast, the normals used in Equation (3) are the re-
sults of the mean shift filtering. As demonstrated in Fig-
ure 3, mean shift filtering removes noises in triangle nor-
mals while preserving the features. Hence, the normals used
in Equation (3) can be considered reliable and we do not
need a stabilizing term such as in Equation (4). As a re-
sult, the distance definition in Equation (3) is more feature-
sensitive than Equation (4) without introducing instability.

Note that we chose ‖Nmi − Nmj‖ in Equation (3) in-
stead of usually used ‖Nmi − Nmj‖

2. Simple calculation
shows that ‖Nmi −Nmj‖

2 = 2(1 − (Nmi ·Nmj)). With
this choice, the distance in Equation (3) is made more sen-
sitive to the deviation of normals, especially when two nor-
mals are very similar.



Figure 3. Left: original Stanford bunny. The other three images demonstrate that different kernel
bandwidths for mesh normals result in adaptive mesh smoothing at different geometric scales. The
kernel bandwidth increases from left to right. (hg = 0.03 in all three images. hn = 0.2, 0.5, and 1.0, re-
spectively.)

Figure 4. Mean shift effect for our segmen-
tation method. Left: noisy octahedron. Mid-
dle: segmentation with our approach. Per-
fect segmentation of the noisy octahedron is
achieved. Right: our approach without mean
shift filtering.

Phase 2: Seed recomputation. Once chart growing has been
completed, the seed is updated for each chart. The relo-
cated seed should be the most interior triangle from the
chart boundary. The distance among adjacent triangles in
this phase is approximated by the geodesic distance;

distance(Ti, Tj) = ‖ci − cj‖, (5)

where ci is the centroid of triangle Ti. The same distance is
used in [23] for the seed recomputation.

Figure 4 shows the segmentation result of our approach
applied to a noisy octahedron model. Our segmentation
procedure delivers the perfect segmentation of the model.
However, without mean shift filtering, our approach is too
sensitive to noise. The parameters used for Figure 4 are
(hg, hn, Nc) = (0.3, 0.5, 8), where hg is the bandwidth
for geometry (1.0 is the maximum edge length of the in-
put model’s bounding box), hn is the bandwidth for nor-
mals, and Nc is the number of charts.

In [23] it was mentioned that their discrete optimization
procedure sometimes fails to converge because of cycles.
This could also happen in our case. Our implementation

Model # of Tris. MCGIM VSA MS + growth
Mannequin 21,680 67.5 32.1 11.4 + 90.4
Fandisk 12,944 31.2 12.7 0.96 + 26.6
Cow 23,216 185 22.9 0.95 + 225
Camel 78,144 1659 256 11.5 + 1598

Table 1. Elapsed time (sec.) of segmentation
processing (see Figure 6). MS+growth stands
for the elapsed times for mean shift cluster-
ing and chart growth procedures.

includes the cycle detection and user specified maximum
number of iterations. Therefore, the iteration process will
be stopped if a cycle is detected for seed positions or the
number of iterations is too large.

4. Experimental Results and Discussion

Figure 6 shows the comparison of our method with [3]
and [23]. We implement the method in [3] with the L2,1

metric and region teleportation. We usually observed better
segmentation results with region teleportation. We experi-
mentally chose 0.01 for the threshold of cluster merging in
region teleportation. The same number of charts (Nc) was
used for segmenting a model with different methods. The
number of triangles of each model in Figure 6 and the pro-
cessing time are shown in Table 1. The feature enhancing
effects of Mean Shift are observed in many cases. For ex-
ample, some models have eyes and they are separated in our
approach, whereas other methods do not successfully cap-
ture them.

The VSA method [3] is originally proposed as a shape
approximation method but attacks the approximation prob-
lem by way of surface segmentation. The method produces



Figure 5. Influence of bandwidth hg (for the sake of visualization, black disks whose radii are propor-
tional to hg are shown). From left to right, geometry bandwidth sizes are 0.0125, 0.05, 0.1, and 0.2.
The bandwidth hn is set to 0.3 and the number of charts is 30 in all cases. Notice how different val-
ues of bandwidth hg affect separation of the eyebrows and mouth.

quite good segmentation results, especially for mechani-
cal objects, because it obtains a piecewise linear approx-
imation of a shape. However, some features are missing
on non-mechanical objects compared with our method, as
demonstrated in Figure 6. The method uses the represen-
tative normal calculated by averaging all normals belong-
ing to a chart. This approach is very successful in detect-
ing anisotropy in a surface shape but has a smoothing ef-
fect that makes the segmentation less sensitive to small fea-
tures.

Figure 5 shows the effects of the bandwidth size in our
approach. We fix the normal bandwidth (hn) to 0.3 and al-
ter the geometry bandwidth, which is shown as a black disk
in the figure. We observed the optimal value stays around
0.1 for this model (the third image from the left). With this
parameter value, we can successfully separate both the eye-
brows and the mouth. Basically, the choice of hg affects the
detected feature size of a mesh and the choice of hn deter-
mines the feature angle to be detected. In Figure 5, hn = 0.3
approximately corresponds to 20 degrees of the dihedral an-
gle.

According to our numerical experiments, selecting
proper values for the bandwidths hg and hn is rather sim-
ple. Although non-linear diffusion effect may generate un-
expected results, in general, we observe that the segmen-
tation results rather intuitively depend on hg and hn in our
method. Small changes of the parameter values usually have
not much affect on the segmentation result.

Currently, no optimization has been carried out in our
implementation. All timings were measured on a 1.7 GHz
Pentium 4 PC. The time to segment a mesh heavily depends
on the number of triangles and the bandwidth size. Our al-
gorithm took about 30 seconds to 25 minutes to complete
the segmentation. Table 1 shows the details of the process-
ing time.

One problematic case for our approach is that the sur-
face has no features. If a surface is very smooth, the distance
function in Equation (3) is close to zero in all directions.

One of the pathetic cases is a plane. In this case, the triangle
normals are the same everywhere, and there is no distance
to grow. For preventing this phenomenon, the geodesic dis-
tance would help but may smooth out the feature-based dis-
tance in some cases. Figure 6(b.1) shows the effect of a too
strong geodesic distance, where we can observe some charts
cross over the features. A weighted sum of geodesic and
normal deviation terms seems a good idea but introduces
one extra parameter. The same problem also occurs in [3],
because they use only normal deviation for the L2,1 met-
ric. Their region teleportation method resolves this prob-
lem. For our implementation, we add small ε(> 0) to Equa-
tion (3), where we use ε = 1.0 × 10−5 determined by ex-
periments.

5. Conclusion and Future Work

We have proposed a simple scheme for clustering mesh
normals and demonstrated its efficiency for generating fea-
ture sensitive mesh segmentation. According to our experi-
ments, the best results are obtained when clustering of mesh
normals is combined with a modification of the mesh char-
tification approach proposed in [23].

The mean shift clustering is based on the Parzen-window
estimation and well suited for dealing with complex, noisy,
and uncertain data sets. This property helps a lot to robustly
process unstable normals resulting from erroneous normal
estimation for meshes with complex shapes.

We have found that determining appropriate bandwidth
parameters hg and hn to generate feature sensitive mesh
partitioning with Mean Shift is rather simple. Roughly
speaking, one recommended value for hg is two to five
times the average edge length of a mesh. At least, hg should
be large enough to contain some neighbor vertices for ex-
ploiting mean shift filtering effects. In future, we plan to
develop a procedure for adaptive selection of the bandwidth
parameters. We also think that the number of charts can be



MCGIM [23]

(a.1) (b.1) (c.1) (d.1)
VSA [3]

(a.2) (b.2) (c.2) (d.2)
our approach

(a.3) (0.1, 0.3, 30) (b.3) (0.05, 0.3, 20) (c.3) (0.015, 0.3, 90) (d.3) (0.015, 0.3, 80)

Figure 6. Results of feature sensitive mesh segmentation. The list of three numbers (hg, hn, Nc) rep-
resents our parameter set. hg is the geometry bandwidth size, which is relative to the maximum
edge length of the input model’s bounding box. hn is the normal bandwidth size. Nc is the num-
ber of charts. The same number of charts (Nc) was used for the results of MCGIM [23] and VSA [3].

selected automatically according to some statistical criteria.
See [1] for relevant ideas.

The mean shift clustering does not allow a user to pre-
scribe the number of clusters explicitly. Thus, if we want
to have the number of charts as a user-specified parameter,
k-means least-squares partitioning seems preferred in com-
parison with Mean Shift. However k-means clustering will
reduce the ability to segment small-sized surface features.

Another idea that intrigues us in this field is to use high-
order surface descriptors (curvature, shape index, etc.) for
mesh partitioning with a richer set of primitives (e.g., pla-

nar, cylindrical, conical, and spherical parts).
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[15] B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares
conformal maps for automatic texture atlas generation. ACM

Transactions on Graphics, 21(3):362–371, 2002. Proceed-
ings of SIGGRAPH 2002.

[16] R. Liu and H. Zhang. Segmentation of 3D meshes through
spectral clustering. In Proc. Pacific Graphics, pages 298–
305, 2004.

[17] S. P. Lloyd. Least square quantization in PCM. IEEE Trans-
action on Information Theory, 28(2):129–137, March 1982.

[18] A. P. Mangan and R. T. Whitaker. Partitioning 3D surface
meshes using watershed segmentation. IEEE Transactions
on Visualization and Computer Graphics, 5(4):308–321, Oc-
tober 1999.
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