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Abstract
One of the basic difficulties with interactive walkthroughs is the high quality rendering of object surfaces with
non-diffuse light scattering characteristics. Since full ray tracing at interactive rates is usually impossible, we
render a precomputed global illumination solution using graphics hardware and use remaining computational
power to correct the appearance of non-diffuse objects on-the-fly. The question arises, how to obtain the best
image quality as perceived by a human observer within a limited amount of time for each frame. We address this
problem by enforcing corrective computation for those non-diffuse objects that are selected using a computational
model of visual attention. We consider both the saliency- and task-driven selection of those objects and benefit
from the fact that shading artifacts of “unattended” objects are likely to remain unnoticed. We use a hierarchical
image-space sampling scheme to control ray tracing and splat the generated point samples. The resulting image
converges progressively to a ray traced solution if the viewing parameters remain unchanged. Moreover, we use a
sample cache to enhance visual appearance if the time budget for correction has been too low for some frame. We
check the validity of the cached samples using a novel criterion suited for non-diffuse surfaces and reproject valid
samples into the current view.

1. Introduction

Interactive navigation through a virtual environment is a
powerful tool in many engineering and design applications,
for instance in architecture and interior design, lighting de-
sign, and simulation. In general, these applications require
global illumination solutions. In the near future, it can be
expected that the importance of interactive exploration will
increase significantly due to common applications such as
virtual tourism, virtual museums, virtual shopping, and the
like. Such applications will be running on powerful servers
accessible through the Internet and will be capable of han-
dling complex scenes whose appearance, realism, and be-
lievability would benefit greatly from global illumination so-
lutions. Thus, there is a strong quest towards improving the
performance of interactive rendering involving global illu-
mination.

Many existing solutions are based on precomputing so-
called illumination maps and their rendering using graphics
hardware. Since the computation time at the preprocessing
stage is not critical in many applications, illumination maps
of high quality can be prepared for complex environments. A
severe limitation of illumination maps is that basically only
non-directional light components can be efficiently stored.

Storing precomputed lighting for specular surfaces typically
involves huge storage costs and/or degradation of image
quality. As a consequence, proper appearance of directional
lighting — resulting from light scattering by glossy, mirror-
like, or transparent surfaces — can be achieved only by on-
the-fly computations. Such computations must be repeated
for each change of the viewing parameters during an inter-
active session.

A reasonable approximation of the appearance of non-
diffuse surfaces can be obtained at interactive frame rates
using graphics hardware functionalities such as Phong shad-
ing, environment mapping, and custom designed techniques.
While the quality of the resulting images can be satisfactory
for less demanding applications such as computer games, the
fidelity of appearance of directional lighting effects with re-
spect to their real world counterpart is poor. Clearly, some
physically-plausible tools such as ray tracing are required for
this purpose. However, this leads to a substantial increase of
computation cost. Due to this cost, only a limited number
of pixels can be updated for every frame without impairing
the sense of interactivity for the user, where at least 5–10 fps
are required. Thus, the question arises how to efficiently al-
lot the system resources in order to minimize the perceptual
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distance between the images obtained during an interactive
session and their corresponding ray traced images.

An important issue is the choice of image regions for the
ray tracing computation, which should correspond to their
ability of attracting visual attention. Visual attention is one
of the fundamental characteristics of the human visual sys-
tem. It is often compared to a spotlight, which enhances
information within a selected region of the viewed image
while suppressing information in the remaining regions30.
It turns out that regions that are strong attractors of visual
attention are highly correlated between subjects and usually
affect a limited screen area46, 22, 24. Thus, ordering the ray
tracing computations according to the predicted saliency of
non-diffuse objects is a promising strategy, which should re-
duce the image artifacts as perceived by a human observer.

We present an approach for interactive navigation in pho-
tometrically complex environments with arbitrary light scat-
tering characteristics. At the preprocessing stage we use the
Density Estimation Particle Tracing technique39. This tech-
nique is capable of handling surfaces with arbitrary light
scattering functions during global illumination computation.
However, the final illumination maps are stored exclusively
for the diffuse light component. To reduce the complexity
of the mesh-based illumination maps, we perform mesh-to-
texture postprocessing as described in21. During interactive
rendering, graphics hardware is used to display the precom-
puted view-independent part of the global illumination solu-
tion using illumination maps. Objects with directional char-
acteristics of scattered lighting are ray traced in the order
corresponding to their saliency as predicted by the state-of-
the-art visual attention model developed by Itti17, 16. Since
the original model of Itti is purely saliency-driven, we ex-
tend this model to take into account volition-controlled and
task-dependent attention, which is especially important for
interactive applications. A hierarchical sampling technique
is used to cover the image region representing an “attrac-
tive” object rapidly with point samples. These point samples
are splatted into the frame buffer using a footprint size that
depends on the hierarchy level of the samples. To ensure that
this corrective splatting affects only those objects, for which
the samples have been computed, we use the stencil test fea-
ture of the graphics hardware together with the stencil mask
that has been created during rendering. Sample caching is
performed to reuse samples computed for previous frames.
A novel approach for aging samples is proposed, which en-
sures proper reconstruction of the appearance of specular
and transparent objects. The correction algorithm operates
in a progressive manner: the displayed image converges to-
wards a high quality ray traced solution, if the viewing pa-
rameters do not change anymore. Rendering of illumination
maps, corrective splatting, and evaluation of visual attention
models are implemented as independent and asynchronously
operating threads, which perform best on multi-processor
operation platforms.

2. Previous Work

The discussion of previous work is focused on two main is-
sues. First, we briefly review existing solutions for interac-
tive rendering of global illumination solutions. In particu-
lar, we focus on the problem of high quality rendering of
surfaces with directional light scattering characteristics. In
the second part we discuss the perception-based guidance of
such computations. Here, we are especially interested in the
application of visual attention models within the context of
interactive rendering, which mostly remains an unexplored
problem so far.

2.1. Interactive Rendering of Global Illumination

In the last couple of years, progress in the development of
fast (and sometimes parallel) systems with comparatively
large main memory and specialized graphics hardware has
led to increased research activity concerning interactive ren-
dering of complex scenes. The complexity of a scene can
be split intogeometric complexity(i.e., the number of poly-
gons or other geometric primitives that have to be processed
to render a view of the scene) andphotometric complexity.
The latter is determined by the complexity of the materi-
als/shaders, number and types of light sources, and the com-
plexity of the rendering equation that is used to compute the
global and local illumination.

Geometric complexity can be addressed bylevel-of-detail
(LOD) techniques such as, e.g., progressive meshes15 or im-
postors19, 28, 31, 8. In general, LOD techniques take into ac-
count geometric properties only and do not consider photo-
metric properties.

A number of methods have been developed to compute
high quality non-diffuse global illumination effects, see for
instance12 for a good overview. In general, these methods
perform a large number of view-dependent computations
tracing light paths through the scene. Thus, the resulting
computation times prohibit interactive rendering. Although
the computation times can be drastically reduced by decou-
pling view-independent (e.g., diffuse) and view-dependent
(e.g., specular) global illumination effects usingmulti-pass
global illumination techniques40, 36, 18, 35, interactive frame
rates are still hard to obtain.

Due to the performance and enhanced functionality of
current graphics hardware, a number of high quality shad-
ing effects can be computed at interactive frame rates us-
ing multi-pass OpenGL rendering29, 23, 6, 9, 14, 41, 1. The ef-
fects that can be simulated include different kinds of shad-
ows, specular and glossy reflections on curved objects, ap-
proximations of arbitrary reflection functions, bump maps,
and normal maps. Each of these techniques handles some
special case(s) from the broad range of lighting effects, and
it is not always obvious how to combine them. Moreover,
there are typically some constraints imposed on the scene,
e.g., a limited number of light sources, restricted curvature
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of reflectors, minimum distance between objects and the re-
flected environment, and the like.

Another way to achieve interactive frame rates for high
quality shading is to performmassively parallel computa-
tions 25, which can be coupled with a progressive display
process45 or with graphics hardware-assisted techniques38.
The render cache42 is a fully decoupled display process that
caches and reprojects a set of samples. Outdated samples
are replaced by new samples from ray tracing or path trac-
ing clients using a priority-based error diffusion sampling
strategy. In contrast to many other approaches, the render
cache does not rely on 3D graphics hardware. During cam-
era motion, however, black holes may appear between the re-
projected samples despite of some smoothing filter, as long
as no new samples have been generated by the ray tracing
clients.

The concept of sparse sampling is exploited by disconti-
nuity meshing26, which may additionally be combined with
caching of samples32. Rendering the resulting triangle mesh
using hardware Gouraud shading yields a piecewise linear
approximation to the final image. Another approach based
on sparse sampling uses projective textures to correct the ap-
pearance of non-diffuse objects during OpenGL rendering of
a precomputed radiosity solution34. Samples obtained from
ray tracing clients are splatted into textures, which are re-
sized adaptively according to the sample density.

2.2. Perception-Based Rendering

The main goal of perception-guided rendering techniques is
to save computation without compromising the resulting im-
age quality as perceived by a human observer. Mitchell20

was the first to apply perceptual considerations to the de-
sign of an adaptive sampling pattern in ray tracing, which
leads to a reduction of visible noise. Instead of using abso-
lute differences in sample intensity, he considered contrast
(i.e., ratio of intensities), which in terms of perception is a
better measure of the variation between samples. Bolin and
Meyer2 developed a simple vision model to guide ray cast-
ing and were able to reduce the number of secondary rays
for image regions with higher spatial frequencies. This was
the first attempt to include visual masking30 into a render-
ing algorithm. An even more sophisticated masking model
suitable for rendering was developed by Ferwerdaet al. 11.
Recently, some more advanced perception-based error met-
rics have been developed to guide adaptive sampling in order
to reconstruct chromatic and achromatic spatial detail and to
compensate for masking effects3, 27. While all discussed so-
lutions have been designed specifically for rendering static
images, their extension to interactive applications seems to
be feasible. The main problem is the reduction of the com-
putational overhead involved in perception modeling.

Since adding more complexity to current early vision
models typically yields only small improvements24, we

investigate higher level perceptual and cognitive elements
such as visual attention models to improve rendering per-
formance. Yee47 was the first to use a visual attention model
to improve the efficiency of indirect lighting computations
in the RADIANCE system44 for dynamic environments. A
saliency map with topographic locations of the attention at-
tractors is created using the visual attention model developed
by Itti 16. The map is used to control the caching of indi-
rect lighting on a per-pixel basis. For less salient image re-
gions, greater errors can be tolerated and the indirect lighting
can be interpolated for a larger neighborhood. This makes
caching more efficient at the expense of blurring details in
the reconstructed illumination solution.

Yee reported that by considering visual attention, a sig-
nificant rendering speed-up can be achieved without notice-
able degradation of animation quality. However, Yee noticed
that subjects who had seen the same animation a number
of times were able to notice more and more artifacts, be-
cause their attention was drifting to less and less salient im-
age features. In our application, we deal with interactive,
user-driven rendering rather than with fixed animation se-
quences and we believe that it is less likely to obtain sim-
ilar sequences of images multiple times in row. Even if it
would be the user’s intention to do so, our sample caching
scheme leads to better and better quality of images when
similar views are revisited. Moreover, our goal is not to use
the model of Itti to choose the final level of rendering accu-
racy for various image regions as in47. We rather predict the
saliency of selected objects in the scene and distribute the
computational resources according to the predicted visual
attraction of those objects. As a consequence, the final re-
sult obtained by our approach will always be of high quality,
even if the initial prediction has been somewhat unfortunate.
In such a case, the only deficiency of our approach lies in
more perceivable image artifacts during intermediate stages
of image computation.

Eye ball tracking systems are occasionally included into
specialized flight and combat training simulators10. Al-
though they may be used to identify image regions that at-
tract the user’s attention, in this paper we discuss only those
computational models of visual attention that do not require
any specialized hardware.

3. Visual Attention Modeling

The amount of visual information reaching the eye is far be-
yond the processing capabilities of the human brain. In fact,
only a small fraction of this information can be fully pro-
cessed and assimilated into conscious experience16. After
some initial information filtering performed in the retina and
ganglion cells, the amount of information reaching the optic
nerve falls into the range 108–109 bits per second24. Visual
attention is an important means to adjust this amount of in-
formation to a manageable size.

Visual attention is often compared to a spotlight enhanc-
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Figure 1: General architecture of the attention model. The
bottom-up component is a simplified version of the model de-
veloped by Ittiet al. 17. The top-down component was added
to compensate for task-dependent user interaction.

ing information in a selected region of the viewed scene.
Shifting visual attention to a peripheral object can be per-
formed with eye movements towards this object. This is
referred to as overt attention, in which case attention is
foveally centered by means of the saccadic (fast) fixation or
smooth pursuit eye motion. For tasks that require only lim-
ited acuity, attention can be shifted without eye movements,
which is referred to as covert attention. Systems relying on
eye ball tracking10 are unable to detect covert shifts of at-
tention.

Early studies of eye movement trajectories (so called
scanpaths) over images performed by Yarbus46 and Noton
and Stark22 showed that subjects fixate similar regions of in-
terest, although the order of attending these regions may dif-
fer significantly between subjects. Treisman developed the
Feature Integration Theory (FIT)37, which compares atten-
tion to the “glue” that integrates the separated features of an
object such as shape, color, and motion. Recently, a “binary”
theory of attention4 gained significant popularity, which
suggests that there are two main components of attention:
bottom-up(rapid, scene dependent, object saliency-driven)
and top-down(slow, task-driven, under cognitive control).
The bottom-up derived saliency map selects locations that
are most likely to be chosen for fixations. Unless these lo-
cations are completely irrelevant for the task at hand, the

top-down processing usually selects among them. Many re-
cent computational models of visual attention are strongly
influenced by the FIT and binary theories24, 16.

In our research, we choose a biologically plausible, state-
of-the-art model of attention developed by Ittiet al. 17. In this
paper we will only describe relevant aspects of this model.
A detailed description is given in the original paper17. The
model performs extremely well for static images16 and was
extensively validated by its developers in many demanding
applications. An outline of its architecture is shown on the
left side of Figure1. An input image is decomposed into a set
of separate channels such as intensityI or colors red, green,
blue, and yellow (R, G, B, Y). Since we couldn’t find any
significant differences in saliency prediction when including
the orientations modality from the original Ittiet al. model,
we ignore this additional channel for the sake of computa-
tion efficiency. Each channel is decomposed into eight spa-
tial frequency scales using Gaussian pyramids5. The chro-
matic opponency30 is modeled for color channels by pairs
R−G, G−R, B−Y, andY−B for each scale in the pyramids.
Center-surround structures present in receptive fields of the
retina, the lateral geniculate nucleus, and the primary visual
cortex30 are modeled as differences between low and high
frequency scales. In fact, a so-calledcolor double-opponent
model is assumed in which pairsR−G andB−Y at the center
of receptive fields are contrasted against pairsG−RandY−B
at the surround region of receptive fields, respectively. As
the result of center-surround structure modeling, six feature
maps for intensity and twelve feature maps for RG and BY
opponent color channels are created. For each feature map, a
normalization operator replicating cortical lateral inhibition
mechanisms30 is applied, whose main task is to promote
maps with a small number of strong features and to suppress
maps with numerous comparable features. The feature maps
are then combined into twoconspicuity mapsfor intensity
and color by simple summation across all scales. Accord-
ing to the FIT theory37, the conspicuity maps that represent
different modalities are normalized and summed up into a
so-calledsaliency map. Equal weights are assumed for each
conspicuity map during this summation according to the hy-
pothesis that similar features compete strongly for saliency,
but different modalities contribute independently to the re-
sulting saliency17.

The attention model developed by Ittiet al. was originally
designed for static images. However, in interactive applica-
tion scenarios, the user’s volitional focus of attention should
be considered. A common observation is that the user tends
to place objects of interest in the proximity of the image cen-
ter and to zoom in on those objects in order to see them in
more detail. In our approach, which is shown on the right
side of Figure1, we determine the bounding box for ev-
ery non-diffuse object using the unique identification code
in the stencil mask (see Section4.1) and measure the dis-
tance between the bounding box center and the image center.
We normalize the obtained distance with respect to half the
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length of the image diagonal. Additionally, we consider the
object coverage in the image plane measured as the percent-
age of associated pixels in the stencil mask with respect to
the number of pixels in the whole image. Although those two
factors are often considered as the bottom-up saliency mea-
sures for static images24, for interactive applications their
meaning changes towards more task-driven top-down fac-
tors. We combine those two factors, and as a result we obtain
the task-driven objectimportance map. Finally, we combine
the importance map with the saliency map obtained from
the bottom-up processing. A control slider is provided to the
user to adjust the weights for balancing between saliency-
driven and task-driven image correction. Figure1 outlines
the architecture of the complete attention model including
our top-down extension to the original Itti model. Figure4∗

shows an input image as it is submitted to our attention
model and the resulting saliency map.

Saliency maps can be processed in two basically differ-
ent ways to order corrective computations. The original Itti
model includes a winner-takes-all strategy that chooses the
most salient object for fixation. In this case, the most salient
object will be corrected until convergence, before the next
salient object is chosen for processing. However, as observed
by Noton and Stark22, there are many variations between
subjects in the order of fixations along measured scanpaths.
We found that in our application the second approach de-
livers better results: after the most salient object is roughly
corrected, its saliency is reduced by a certain amount (e.g.,
10 %) and the selection of the most salient object is repeated.
This ordering approach allows other objects with a similar
level of saliency to be corrected at least roughly before the
most salient object is fully corrected.

4. Corrective Splatting

In this section we describe the basic idea of our corrective
splatting approach as well as some details of our method. We
also comment on implementation issues where appropriate.

4.1. Overview

In a preprocessing step we compute a view-independent
global illumination solution of our scene39 and store the
result (i.e., the illumination values) either in textures21 or
along with the vertices of triangle meshes.

After reading the scene description, we construct an ob-
ject hierarchy that takes into account both the material prop-
erties and spatial distances between the primitives following
the approach in13. Every group in this hierarchy contains
primitives of the same material in a close spatial neighbor-
hood. A scene that is, for instance, composed of a wooden
table and two china cups on the table will be represented by
a hierarchy where the root node consists of the table’s prim-
itives and two child nodes, each of them representing one of
the cups, respectively. Thus the resulting hierarchy somehow
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Figure 2: Data flow during rendering. The dotted lines de-
pict data flow between different threads. The following ab-
breviations are used: FB = frame buffer, SB = stencil buffer,
PQ = priority queue, SQ = sample queue. The number of ray
tracing threads depends on the number of processors avail-
able (cf. Section4.1).

resembles the modeling hierarchy, which might not be avail-
able anymore after the preprocessing step. After the hierar-
chy has been constructed, we assign a unique identification
code id ∈ {1,2,3, . . .} to each group in the hierarchy that
contains an object with non-diffuse material properties, e.g.,
specularity, reflectivity, or transparency. For every group that
contains only purely diffuse objects, we setid = 0.

Next, we start oneanalyzer thread, which performs a per-
ceptual analysis of the frame buffer (see Section3), and
at least oneray tracing thread. The rendering takes place
within the main thread that was started by the user. Al-
though our system also works on a mono-processor machine,
it performs much more efficiently if at least three processors
on a multi-processor machine are available. For every addi-
tional processor available, we start one additional ray trac-
ing thread to increase the overall ’corrective performance’.
The user can specify a desired frame ratef for the update
of the display. During an interactive session, we perform the
following steps for every frame that is displayed (see also
Figure2):

1. Get current wall clock timet0.
2. If the camera has changed: set up new camera and per-

form aging of the cached samples (see Section4.5).
3. Render the scene hierarchy using OpenGL graphics hard-

ware. Lighting is disabled, since the color information
stored in vertices and/or textures represents illumination

c© The Eurographics Association and Blackwell Publishers 2001.



J. Haber, K. Myszkowski, H. Yamauchi, and H.-P. Seidel / Perceptually Guided Corrective Splatting

samples from a global illumination solution. During ren-
dering, the unique identification code of every object is
written into the stencil buffer for every pixel where the
corresponding depth test passes.

4. Copy the content of the frame buffer into a texture
TFB. This operation is very fast, since it takes place en-
tirely within the graphics hardware. Then clear the frame
buffer, but keep the content of the stencil buffer.

5. Warp and splat samples from previous frames into the
frame buffer with stencil test enabled, so that a sample
that belongs to objectid will only cover pixels with asso-
ciated stencil valueid.

6. Get current wall clock timet1. While t1− t0 < 1/ f : col-
lect samples from ray tracing thread(s), splat them into
frame buffer and additionally store them for reuse, and
updatet1.

7. Enable blending with blending function set to addi-
tive mode (glBlendFunc(GL_ONE,GL_ONE) ), en-
able texturing using textureTFB, switch to orthogonal
projection, and draw a single rectangle of the size of the
frame buffer. By setting minification and magnification
filters toGL_NEAREST, a one to one correspondence of
the pixels in the frame buffer and the texels inTFB is ob-
tained.

8. If the analyzer thread requests a new frame buffer image,
copy frame buffer and stencil buffer to memory and in-
form the analyzer thread about new content.

As long as the rendering (step 3) and splatting (step 5)
can be performed on the available graphics hardware within
at most 1/ f seconds, the frame ratef will roughly be kept.
On current graphics hardware, the steps 4 and 7 are usually
very fast: they sum up to about 0.05 milliseconds for a frame
buffer of 512×512 pixels on our operating platform. Step 8
can be somewhat more costly (see Section5 for detailed
timings), but this step is typically performed every third or
fourth frame only. The correction loop (step 6) is only per-
formed as long as the frame time budget is not exceeded.

4.2. Inter-Thread Communication

As a consequence of our system’s design, the analyzer thread
and the ray tracing threads are running asynchronously to the
main thread. Communication between the threads is accom-
plished by using mutual exclusion locks (mutexes) and con-
dition variables to access common data structures such as the
priority queue (PQ) or the sample queue (SQ), see Figure2.
In our implementation, we use thepthreads library as an
API to the POSIX thread model.

The entries of the PQ are coordinates of sample regions in
image space with an associated priority as computed by the
analyzer thread. The analyzer thread may enter these sam-
ple regions in an arbitrary order w.r.t. their priorities. Any
ray tracing thread that accesses the PQ automatically obtains
the entry with the highest priority. Ray tracing threads may

also resubmit entries to the PQ for load balancing, see Sec-
tion 4.4. Every sample that is computed by one of the ray
tracing threads is stored in the SQ. The SQ is a FIFO buffer,
which is read during the correction loop (step 6 in the previ-
ous section) in the main thread.

4.3. Sampling and Splatting

Samples are generated using a (recursive) ray tracer, which
employs importance sampling for area light sources and dis-
tributed ray tracing for glossy surfaces. Local illumination at
hit points is evaluated using the shading models proposed by
Cook-Torrance7 and Ward43.

As a result of the perceptual analysis of the frame buffer,
a sample region in image space is submitted to the ray tracer.
To efficiently create point samples that cover the sample re-
gion, we basically follow the approach in33. However, our
sampling scheme differs from the previous one in that we
iteratively compute point samples in image space instead
of recursively sampling object space. This sampling scheme
has the following advantages:

• In contrast to random sampling strategies, it is guaran-
teed that the number of samples needed for splatting into
a sample region until convergence against a ray traced so-
lution is exactly the same as for ray tracing the sample
region.
• The sample positions are computed in such a way that

the samples can be splatted efficiently using square foot-
prints, such that the resulting image converges progres-
sively against a ray traced solution.

The
√

5 sampling scheme from33 uses a hierarchy of uni-
form grids, which are scaled by a factor ofw = 1/

√
5 and

rotated by an angle ofα = arctan1/2 ≈ 26.6◦ from one
level to the next. The initial grid is spawned by the vectors
u1 = (h,0) andv1 = (0,h), i.e., it is aligned to the Cartesian
coordinate system and has a grid step size ofh. The spawn-
ing vectors of grid level̀ are recursively defined as

u`+1 =
2u` + v`

5
, v`+1 =

−u` + 2v`
5

.

For every grid level̀ , the sample positionspi j ∈ R2 are ob-
tained aspi j = i ·u` + j ·v`, i, j ∈ Z.

To tailor this sampling scheme to our needs, we intro-
duced the following changes:

1. The generation of sample positions is initialized by the
desired level̀ and the coordinates of the axis-aligned
bounding box of the sample region.

2. The sample positions can be iterated efficiently in a non-
recursive way.

In the initialization step we determine the min and max
indices jmin and jmax of the sample positionspi j of level `
that lie inside the sample region. Then we use the Cohen-
Sutherland line clipping algorithm to compute the min and
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max indicesimin( j) and imax( j) of the sample positionspi j
for jmin ≤ j ≤ jmax. While iterating through the sample po-
sitions, special care has to be taken to omit those positions
that have already been generated for a coarser level. Due
to the regular structure of the sampling pattern, the condi-
tion for omitting a sample position can easily be checked:
if (i + 2 j) mod 5 is equal to zero, the sample positionpi j

has to be omitted†. In this way, all sample positions{pi j |
jmin ≤ j ≤ jmax, imin( j) ≤ i ≤ imax( j)} within the sample
region can be enumerated efficiently: our iterative algorithm
is about eight times faster than the original recursive algo-
rithm.

Since the sample positions of level 1 are aligned to the
coordinate system, the sizes1 of the square splat footprint is
given bys1 = h. For sample positions of level`, the sizes̀
can be computed as

s̀ =
h

(
√

5)`−1
max(|cos((`−1)α)|, |sin((`−1)α)|) .

Figures5∗ and 6∗ illustrate the structure of the sampling
pattern and the results from splatting the samples using a
square splat footprint. This sampling pattern has the partic-
ularly nice property that the center point of a splat (i.e., the
sample position) of any level` will never be covered by any
other splat of any level̀′ > `. If we make sure that splats
are drawn level by level starting from level 1, the final im-
age should converge to a pixel-precise ray traced image as`
is increased up to the level`max, for which round(s̀ max) = 1.
Unfortunately, this is not true for a discrete image plane such
as a raster screen: the sample positions of level`max do in
general not coincide with the pixel coordinates, so that due
to integer rounding some pixels will be overwritten, while
other pixels will remain blank. To overcome this problem,
we rotate all grids by−(`max−1)α. In this way, the finest
grid is aligned to the coordinate system of the screen, i.e., the
rows and columns of pixels. Now we only have to adjust the
grid step sizeh such that the splat sizes̀ max = h/(

√
5)`max−1

is equal to one:h = (
√

5)`max−1. Using these modifications,
the union of the splats of all sample positions from level one
to level `max covers all pixels of the image in such a way,
that every pixels obtains the same color as in a ray traced
solution.

4.4. Load Balancing

To ensure optimal utilization of multi-processor operating
platforms, we employ a load balancing scheme among the
ray tracing threads. To this end, the user specifies a job size

† This follows from the fact, that any sample positionpi′ j′ =
i′ ·u`+1 + j′ ·v`+1 from level`+1 has to be omitted, if it coincides
with a sample positioni · u` + j · v` from level `. Substituting the
recursive definitions foru`+1 andv`+1, this condition is equivalent
to i′ = (2i− j)/5, j′ = (i + 2 j)/5, sinceu` ⊥ v`. Sincei′, j′ ∈ Z,
this reduces to(i + 2 j) mod 5= 0.

Figure 3: Load balancing among six ray tracing threads.
Three non-diffuse objects (two glasses and a mug) are
placed on a table. The pixels of these objects are color-coded
to indicate which of the six ray tracing threads computed the
respective pixel.

Njob, which represents the maximum number of samples that
are computed by a ray tracer within one job.

In addition to the coordinates and the priority, the priority
queue (PQ) entries contain a level counter` and an itera-
tor positioni. For every sample region the analyzer thread
submits to the PQ, these values are initialized to` = 1 and
i = 0. Whenever a ray tracing thread takes an entry from the
PQ, the numberN` of sampling points in the associated level
` is computed. Ifi + Njob < N`, a new entry with the same
coordinates, priority, and level, but with the new iterator po-
sition i + Njob is submitted to the PQ. If, on the other hand,
i + Njob ≥ N`, the ray tracing thread can complete the level
`. If in this case` < `max, a new entry with the same co-
ordinates, but with reduced priority, level`+ 1, and iterator
positioni = 0 is submitted to the PQ. We found that reducing
the priority by 10–20 % seems appropriate to keep the bal-
ance of the initially computed priorities. Figure3 illustrates
the effect of load balancing by color-coding the sample po-
sitions with respect to the ray tracing thread.

4.5. Aging of Samples

The generation of samples is an expensive operation, espe-
cially if the scene contains many transparent and/or highly
reflective objects and an expensive shading model is used.
Thus we store samples in a cache for reuse and warp them
before splatting according to the new camera settings, see
also Figure6∗. To avoid high warping and splatting costs,
we control the number of samples in our cache with an ag-
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ing mechanism. In contrast to previous approaches42, 32, our
aging mechanism is based on a validity measure rather than
using a constant rate aging. Since our samples contain only
view-dependent illumination information, the validity of a
sample can be measured by the deviation of the dot prod-
uct between the surface normal and the current viewing di-
rection with respect to the value of the dot product during
sample generation.

Our camera model holds an age counter, which is initial-
ized to zero and incremented whenever the camera settings
change. When a sample is created by a ray tracer, the current
age of the camera is stored along with the position and color
of the sample. In addition, we store the (interpolated) sur-
face normal of the hit point and the value of the dot product
between this normal and the viewing direction for which the
sample has been computed. Both the surface normal and the
dot product are computed during the shading process, so that
we do not need to perform additional computations.

At the beginning of every frame we perform aging of the
samples in our cache if the settings of the camerac have
changed (step 2 of the algorithm in Section4.1). For every
non-diffuse objectowe determine the first level`0, for which
there are at leastNmin samples available. For every sample
s of level `0 we compute the dot productdnew between the
stored surface normal and the current viewing direction for
that sample. If the absolute difference betweendnew and the
stored dot product valued of s is larger than a user-specified
valueδ∈ [0,1], we mark the samplesas invalid. If more than
half of the level-̀0 samples of a certain agej are invalid, we
delete all samples of agej of the objecto. The following
pseudo-code illustrates this aging mechanism once more:

for every non-diffuse object o
determine starting level `0
for age i = 0, . . . ,MAX_AGE

init counter: Ninvalid [i] = Ntotal [i] = 0
for every level- `0 sample s of o

set viewing direction v = c.eye −s.pos
compute dot product dnew = 〈s.normal ,v〉
increase Ntotal [c.age −s.age ] by one
if (|dnew−s.d| > δ) then

increase Ninvalid [c.age −s.age ] by one
for level `= 1, . . . , `max

for every level- ` sample s of o
set age difference j = c.age −s.age
if (( j > MAX_AGE) or

(Ninvalid [ j] > 0.5∗Ntotal [ j])) then
delete s

In our simulations, we typically useNmin = 10 andδ ∈
[0.05,0.2]. We store samples in a nested data structure of
linked lists: every non-diffuse object has its own lists of sam-
ples for each level of hierarchy. This data structure permits
efficient aging, which takes about 0.01 seconds for 50,000
cached samples in our implementation.

5. Results

The implementation of our approach has been integrated into
our rendering system, which supplies sophisticated function-
alities for OpenGL rendering, ray tracing, and shading. All
timings in this section have been measured for an image size
of 512×512 pixels on an SGI Onyx3 with eight 400 MHz
R12k processors and 8 GB main memory. Our application
runs also on a single processor SGI O2 and on a standard
Linux PC. Due to the lack of multiple processors on these
machines, however, the frame rates are not comparable to
those obtained on the Onyx.

We performed a number of informal experiments with the
visual attention model described in Section3. We found that
the predictions of the bottom-up component are usually in
good agreement with the user’s fixations at initial stages of
interaction, when the user is not familiar with the scene. At
later stages of interaction, we noticed that users more of-
ten deliberately tend to ignore the most salient objects and
inspect less “attractive” scene regions. In this case, our sim-
ple top-down modeling compensated quite well for this goal-
directed user behavior. We found that providing the user with
the control over the weights assigned to the saliency- and
task-driven attention components is very useful. For users
familiar with the scene, the corrective splatting performed
best when the two attention components were roughly bal-
anced. As the result of our simplifications to the Itti model
(see Section3), the processing time for the complete atten-
tion model was below 0.3 seconds.

During an interactive session, the computation time for
rendering each frame is made up by several components:

• aging of samples: 0.005–0.01 s for 50,000 samples;
• OpenGL rendering: 0.04–0.05 s for about 90,000 triangles

with 100 different textures;
• warping and splatting cached samples: 0.02–0.03 s for

50,000 samples;
• reading frame and stencil buffer: 0.02 s.

Taking into account that reading the frame and stencil
buffer happens about every 0.3 seconds, the total frame rate
obtained from these timings is about 10–14 fps. This frame
rate does not include the correction step of the rendering
loop. If the user sets the desired frame rate to, e.g., 8 fps,
there are on the average about 0.025–0.05 seconds left for
correction within each frame. During 0.05 seconds, we can
generate and splat the following numbers of corrective sam-
ples:

# ray tracing processors # samples

2 500–800
4 1000–1500
6 1500–2500

The numbers depend on the complexity of the scene, the ray
tracing depth, and the number and material properties of the
objects that are hit during ray tracing.
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Clearly, the OpenGL rendering and the warping and splat-
ting of cached samples are the bottleneck of our implemen-
tation. These two steps should definitely benefit from adapt-
ing our data structures to the graphics hardware. Currently,
we do not make use of triangle strips or fans for rendering.
The generation of such connected groups of triangles could
be integrated seamlessly into the preprocessing step. Also,
the splatting of old samples could be sped up by using ver-
tex arrays. However, the rendering bottleneck is somehow
attenuated by the fact that due to our mesh-to-texture pre-
processing21, we were able to reduce the triangle count in
our scenes by up to 80 % compared to the number of trian-
gles that had been generated by adaptive subdivision during
the precomputation of the global illumination solution.

6. Conclusion and Future Work

We introduced a novel approach for high quality rendering
during interactive walkthroughs in environments containing
objects with arbitrary light scattering characteristics. Due to
the restricted computation time available during interactive
rendering, our approach incorporates several aspects to ob-
tain the best image quality as perceived by a human observer.
To this end, we apply an advanced visual attention model to
identify and order the image regions that are likely to be at-
tended by the user. We introduced the concept of corrective
splatting, which uses that order to generate ray traced point
samples that are splatted into the image plane using a stencil
buffer test. The sample positions are determined by a hier-
archical sampling scheme, which has been adjusted to guar-
antee convergence to a fully ray traced solution. As a result
of our processing, potential shading artifacts during camera
motion are more likely to appear in less salient regions and
will therefore be considered less annoying by the user. To
enhance the visual appearance in uncorrected regions, we
maintain a sample cache for reprojecting samples from pre-
vious frames. The validity of such old samples is based on a
novel criterion, which is used for cache management.

Our implementation delivers good results when interac-
tively navigating through scenes of medium complexity at
about 10 fps. In contrast to other approaches that require
(massively) parallel computations such as for instance25, 42,
our method performs very well on operating platforms with
a limited number (4–8) of processors. Moreover, we can dis-
play high quality soft shadows and indirect illumination and
we do not introduce any kind of rendering artifacts for purely
diffuse objects. In addition to some optimizations regarding
the OpenGL rendering, we would like to combine our ap-
proach with some level-of-detail and occlusion culling tech-
niques to speed up rendering for scenes of higher geometric
complexity. Moreover, it would be very interesting to inves-
tigate the applicability of global illumination methods that
can handle dynamic environments. Finally, we would like
to experiment with panoramic projection systems, where the
user can only observe a limited area of the display at a time.
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Figure 4: Visual attention processing. Left: An input image showing a view-independent global illumination solution, which
has been computed in a preprocessing step. Middle: The resulting saliency map, where bright grey levels encode objects with
strong saliency. Right: The fully converged solution after corrective splatting has been applied according to the results of our
attention model.

· · ·

Figure 5:
√

5 sampling scheme. All images are zoomed to the same level. Left: Level 1 splats (red) with edge length h cover the
image domain. The size of the level 2 splats (blue) ish√

5
cos(α), cf. Section4.3. Middle: Additional level 3 splats are shown in

green. The center pixels of all splats (i.e., the sample positions) are marked in white. During convergence, these pixels will not
be covered by any other splats. Right: Splats of levels 1–6 have been applied.

Figure 6: Warping old samples for reuse. Left to right: a) Completely corrected view of a chrome-plated duck on a chair. b)
Warping the samples from image a) for zooming in without computing new samples reveals the structure of the sampling pattern.
c) Same as in b) plus new samples of level one and two (58 samples) splatted into the frame buffer. d) Same as in c) plus new
samples of level three (188 samples). During an interactive session, the user will typically see corrected images of at least level
three, since this correction level can be achieved with a few hundred samples per frame.
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